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Ambient air pollution imposes large costs on human well-being. Among the most widely

documented effects are those on health, such as increases in hospital use and premature mortality

among children and the elderly (Chay and Greenstone, 2003; Jayachandran, 2009; Chen et al.,

2013; Deryugina et al., 2019; Anderson, 2020). Air pollution exposure can also reduce labor supply

and productivity (Graff Zivin and Neidell, 2012; Hanna and Oliva, 2015). However, the extent of

the impact of air pollution on the labor market remains largely unknown and is often cast as limited.

For example, major assessments of the economic benefits of air pollution reductions have attributed

a small fraction of the benefits to labor market effects (e.g., U.S. Environmental Protection Agency,

2011; OECD, 2016). However, these assessments typically have considered only limited aspects,

such as lost days of work due to illness or premature mortality, potentially missing important effects

arising through job separations or productivity while at work. Quantifying the broader effects of air

pollution on labor market outcomes matters greatly both for understanding how pollution affects

human welfare and for designing optimal air quality policies.

This paper examines the medium-run effects of transitory air pollution shocks on U.S. labor

income and employment. A key challenge for measuring the causal effect of air pollution on

nationwide labor market outcomes is finding geographically widespread fluctuations in pollution

that are not themselves driven by factors that directly impact economic activity. To sidestep the

joint determination of air quality and economic activity, our analysis leverages variation in air

quality induced by wildfire smoke. Wildfires account for about 20 percent of the fine particulate

matter emitted in the United States (U.S. Environmental Protection Agency, 2014). Wind can carry

wildfire smoke for thousands of miles, generating plausibly exogenous air pollution events that are

geographically dispersed, widespread, and unconnected to economic factors such as regulations

(Langmann et al., 2009). Wildfires have increased in frequency and intensity in recent years,

making them an increasing concern as a source of pollution nationwide.

In our analysis, we exploit variation in wildfire smoke exposure at the county level to estimate

the impacts of transient air pollution events on labor market outcomes. Our analysis relies on

linking three primary data sources from 2007 to 2019: high-resolution remote sensing data from
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satellites that show the locations of wildfire smoke plumes in the United States,1 air quality data

from ground-level pollution monitors, and labor market data for all counties in the continental

United States. To facilitate comparison of our estimates to those from prior studies, we report both

reduced-form effects of wildfire smoke and instrumental variables (IV) models that use smoke

exposure as an instrument for local concentrations of fine particulate matter (PM2.5). We then

benchmark the welfare costs of lost earnings due to pollution by comparing them to mortality

costs derived from established estimates in the literature.

Several features of wildfire smoke combine to create a useful natural experiment for studying

the effects of air quality on labor market outcomes. Wildfire smoke events occur regularly through-

out the United States. During our study period, U.S. counties were fully covered by wildfire smoke

for an average of 20.2 days per year on a population-weighted basis, and nearly every county ex-

perienced some exposure. Drifting wildfire smoke plumes create sharp air pollution shocks that

have magnitudes typical of daily variation in U.S. air quality. At the daily level, an additional day

of wildfire smoke increases concentrations of ground-level fine particulate matter (PM2.5) by an

average of 2.2 µg/m3, about one-third of the daily standard deviation. The relationship between

smoke exposure and PM2.5 can also be detected at the quarterly level, which is the time frequency

at which we conduct labor market analysis. We show that an additional day of smoke raises a

county’s quarterly average PM2.5 concentration by about 0.06 µg/m3. When we control flexibly

for wind direction, we find that these estimates remain largely unaffected, indicating that wildfire

smoke rather than other pollution sources upwind are responsible for the variation in air quality.

Our study has three primary results. First, we find that wildfire smoke exposure leads to sta-

tistically and economically significant losses in labor income, employment, and labor force partic-

ipation (LFP). We estimate that each day of smoke reduces quarterly per capita earnings by $5.2,

or about 0.1 percent. Multiplying this effect by the average number of smoke days each year, we

calculate that wildfire smoke reduces earnings by nearly 2 percent of U.S. annual labor income

($125 billion in 2018 dollars) per year on average between 2007 and 2019. We find that the ef-

1We use wildfire smoke exposure data developed by Miller, Molitor and Zou (2021) and adapt it to fit the unit of
analysis for the labor market data.
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fect of smoke is larger than average among older workers, suggesting that age and related poor

health may amplify the negative labor market effects of air pollution.2 On the extensive margin,

we show that an additional day of smoke exposure reduces employment by 80 employees per mil-

lion residents aged 16 and older; this can explain 13 percent of the total earnings effect of smoke

exposure, assuming that those who lost employment earn average incomes. We further document

a reduction in LFP of 39 per million people, consistent with some employment losses resulting in

labor force exits. These results provide novel evidence linking air pollution to extensive margin

labor responses and indicate a channel through which short-run changes in air quality may have

sustained impacts on the labor market.

Second, we leverage plausibly exogenous variation in wildfire smoke exposure to provide one

of the first national estimates of the causal effect of ambient air pollution exposure on labor market

outcomes. Our baseline estimates imply that a 1 µg/m3 increase in quarterly PM2.5 concentrations

reduces per capita earnings in the quarter by $103, reduces employment by 1,750 workers per mil-

lion residents aged 16 and older, and reduces LFP by 791 individuals per million people. All three

estimates are an order of magnitude larger than their ordinary least squares (OLS) counterparts,

which reinforces the importance of a research design that addresses measurement error and endo-

geneity.3 Our estimates capture medium-run effects of transitory air pollution shocks, which differ

from the shorter-run effects that have been the focus of most prior studies of air pollution and the

labor market, such as those examining effects on piece-rate workers in agricultural, manufacturing,

and service settings. While our findings are based on national data covering income from nearly

every industry, our baseline estimate of the effect of air pollution on earnings is typical of effects

2Medical and public health studies find that vulnerability to respiratory and circulatory illness rises with age,
suggesting that older workers may be particularly responsive to air pollution (e.g., Bentayeb et al., 2012; Schlenker
and Walker, 2016). For examples of the mortality literature, see Dockery et al. (1993) and Pope et al. (2009). See
Chan and Stevens (2001) for evidence related to job search at older ages.

3One caveat that we discuss further in Section 3.3 involves the interpretation of the IV estimate as the causal effect
of an independent increase in PM2.5, as air pollutants tend to correlate with each other, an issue that applies generally
to studies of the impact of air pollution. In our study context, we document that wildfire smoke indeed generates an
omnibus increase of multiple pollutants, though most predominantly for ground-level PM2.5 and, to a smaller degree,
for PM10 and O3. We interpret the IV broadly as the effect of bad air quality as proxied by PM2.5. While our IV design
does not pin down the effect of individual pollutants, in Appendix Table A.3, we report a multivariate OLS analysis
which provides supportive evidence that PM2.5 appears to be the strongest predictor for earnings losses among criteria
pollutants recognized by the U.S. Environmental Protection Agency.
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found in prior studies, suggesting that air pollution affects labor markets broadly, and not just in

narrowly defined settings.

Third, we benchmark the welfare cost of lost earnings to the cost of premature mortality due

to smoke exposure. To do so, we first develop a stylized model of health and labor supply, which

allows us to gauge social welfare losses based on our IV estimate of the earnings effect of PM2.5.

We provide a back-of-the-envelope estimate that the annual social welfare costs of lost earnings

are about $92 billion per 1 µg/m3 annual increase in PM2.5. Next, we quantify the mortality costs

of PM2.5 using established estimates from Deryugina et al. (2019), who leverage quasi-random

variation in wind patterns to identify causal effects of PM2.5 on elderly mortality at the daily fre-

quency for the entire United States.4 Using a range of commonly used values of a statistical life,

we calculate the premature mortality costs of PM2.5 from wildfire smoke to be between $8.1 bil-

lion and $31.3 billion annually. These estimates are lower than our estimates of smoke-related

losses in earnings ($123 billion) and the welfare costs ($92 billion) of these losses. Our findings

contrast sharply with prior air pollution assessments that put labor market costs of air pollution

at less than 5 percent of the premature mortality costs in the United States (U.S. Environmental

Protection Agency, 2011; OECD, 2016; World Bank, 2016). These assessments have generally

focused only on lost work due to illness or premature mortality, and they have relied on strong

modeling assumptions in lieu of direct estimation. For example, the usual method employed by

the Environmental Protection Agency (EPA) multiplies estimates of the effects of pollution on a

selection of health endpoints (such as cardiovascular or respiratory hospitalizations) by the typical

number of lost work days (usually taken from surveys) associated with each endpoints (U.S. Envi-

ronmental Protection Agency, 2011). By contrast, our results are based on administrative measures

of income and provide a direct comparison of mortality and labor market effects that arise from

quasi-experimental variation in pollution exposure.

4While our preferred calculation is based on existing estimates from independent studies, we also provide a com-
plementary analysis by leveraging the smoke quasi-experiment again and directly estimating the mortality effects
of smoke (and the resulting pollution increases) using mortality data available at the monthly frequency. Though less
powered than the daily analysis of Deryugina et al. (2019), our estimates are broadly in line with those of the literature,
and produce similar conclusions on the mortality costs of PM2.5 exposure.
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In addition to providing novel empirical evidence on the aggregate effects and relative impor-

tance of labor market channels in the evaluation of the costs of air pollution, our paper makes

several other contributions. The first concerns pollution abatement policy. Though the pollution

variation we study primarily occurs below regulatory standards set by the EPA, our findings never-

theless indicate that such pollution significantly reduces labor market earnings. Failure to consider

labor market costs may therefore lead to inefficient pollution standards and regulations. Second,

our findings suggest the possibility of a “double dividend” that capitalizes on the potential for re-

ductions in air pollution to increase labor supply, thereby both raising labor income and alleviating

the tax distortion associated with labor income taxes (Williams III, 2003). Moreover, our findings

suggest that the magnitude of the positive income effects from other air pollution regulations may

be greater than previously has been recognized.

Our findings also provide evidence of how changes in health can lead to changes in employment

and earnings and offer an improved understanding of the conditions under which these effects are

largest. The propagation of short-run labor market shocks, especially those that generate job losses,

are of long-standing interest in the labor and macroeconomics literatures (Jacobson, LaLonde and

Sullivan, 1993; Neal, 1995; Jarosch, 2021). Our findings that pollution shocks reduce labor in-

come and employment add to a small but growing literature that documents the lasting impacts of

changes in health on labor supply using quasi-experimental evidence (Coile, 2004; Stephens Jr and

Toohey, 2018). We also find evidence that workers bear a disproportionate burden from such air

pollution in certain regions, including those that have a higher Black population share.

Finally, our research adds to a growing body of literature on the economic and social costs of

natural disasters and on how policies can be designed to mitigate disaster impacts. While dam-

ages from many natural disasters tend to be localized, our findings show that drifting smoke from

wildfires creates an externality that can inflict significant losses in locations far from the fires

themselves. These social costs should be considered alongside traditional considerations of wild-

fire damages to property and natural resources and the costs of firefighting when designing policies
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for local land use and fire management.5 In addition, our findings contribute to a growing body

of literature on trans-boundary pollution with international implications, as an important share

of wildfire smoke in the United States originates in Canada or Mexico (Lipscomb and Mobarak,

2016; Monogan, Konisky and Woods, 2017; Yang and Chou, 2017). Climate model predictions

that wildfire events will increase in frequency and severity underscore the importance of advancing

our understanding of the impacts of these events.6

1 Background and Conceptual Framework

1.1 Pollution Effects on Health and Productivity

How does exposure to transient air pollution events such as wildfire smoke affect labor market

earnings? Wildfire smoke contains particulate matter that enters the lungs and can pass into the

bloodstream. Smoke also carries other pollutants, such as ozone, carbon monoxide, atmospheric

mercury, and a range of volatile organic compounds (VOCs). A large literature in biomedical

sciences, public health, and economics demonstrates negative effects of air pollution exposure on

human health (e.g., Deryugina et al., 2019). While wildfire smoke is understood to operate through

the same channels as other sources of air pollution, the composition of wildfire smoke may make it

more or less harmful to human health per unit of measured particulate matter.7 The health effects

of wildfire smoke exposure have been linked to increases in adult mortality (Miller, Molitor and

Zou, 2021), increases in infant mortality (Jayachandran, 2009), elevated risk of low birth weight

(McCoy and Zhao, 2016), and reductions in lung capacity (Pakhtigian, 2022).

5Kochi et al. (2010) survey this literature, finding only six studies that have quantified the economic cost of wildfire
smoke, and none that include economic costs manifested through the labor market.

6Climate change is projected to increase temperatures and reduce precipitation, leading to longer and more intense
fire seasons; for example, every one-degree-Celsius increase in global temperature is projected to quadruple acreage
burned by wildfires. See National Research Council (2011) for more details on this projection, and Moritz et al. (2012)
for more on modeling of climate-and-wildfire linkages. Consistent with predictions generated by these models, recent
fire seasons have set records in number of fires, acreage burned, and property damage.

7Research on the differences in the composition of smoke from biomass burning and car exhaust finds higher
reactivity of VOCs in smoke, which is consistent with the incomplete burning of the carbon material in a fire than in
internal combustion (e.g., Verma et al., 2009, 2015; Bates et al., 2015). Wildfires have also been found to produce
higher levels of gaseous and particulate pollutants than prescribed burns (Liu et al., 2017).
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Air pollution can also affect non-health outcomes (see Aguilar-Gomez et al., 2022, for a re-

view). For example, air pollution may cause individuals to take costly avoidance or defensive

actions (Chay and Greenstone, 2005; Moretti and Neidell, 2011; Graff Zivin and Neidell, 2013;

Deschênes, Greenstone and Shapiro, 2017; Barwick et al., 2019). For wildfire smoke in partic-

ular, survey research has documented various behavioral responses, such as spending more time

indoors, running air conditioners longer, and missing work (Jones et al., 2015). Burke et al. (2021)

documents a host of awareness and behavior changes, including health-protective behaviors, mo-

bility, and sentiment, in response to increasing wildfire pollution. Prior studies have found that air

pollution exposure can also lead to missed work days and reduced productivity.8 Most of these

studies have focused on specific settings chosen to minimize simultaneity issues such as reverse

causality, making it difficult to assess the incidence of air pollution on workers more generally.

While various studies have examined the short-run effects of transient air pollution shocks in

adulthood, relatively little is known about longer-run effects, which could be more significant if

short-run pollution effects catalyze longer-run health and labor market responses. Theoretically,

short-run health effects of air pollution may result in lasting earnings losses over a longer time

through either health channels or interactions with the labor market. Biomedical mechanisms exist

through which short-run exposure may affect medium- and long-run health. Most directly, once

particulate matter enters the body, it may take weeks or months for it to clear. In addition, transient

exposure may result in adverse health events, such as heart attacks or the onset of asthma, reducing

health capital and leaving exposed individuals more vulnerable to future health shocks. Looking

at very long-run effects of health on income, exposure to adverse economic and environmental

conditions in early childhood can lower educational attainment and earnings later in life (Case,

Lubotsky and Paxson, 2002; Sanders, 2012; Isen, Rossin-Slater and Walker, 2017).

8See Hanna and Oliva (2015) and Aragón, Miranda and Oliva (2017) for air pollution’s effects on hours worked;
Hausman, Ostro and Wise (1984), Hansen and Selte (2000) and Holub, Hospido and Wagner (2020) for sick leave;
Graff Zivin and Neidell (2012) and Chang et al. (2016) for the productivity of agricultural workers; He, Liu and
Salvo (2018) and Adhvaryu, Kala and Nyshadham (2022) for the productivity of Chinese and Indian manufacturers,
respectively; Chang et al. (2019) for the productivity of indoor call center workers; Lichter, Pestel and Sommer (2017)
and Archsmith, Heyes and Saberian (2018) for the performance of soccer players and baseball umpires, respectively;
and Ebenstein, Lavy and Roth (2016) and Roth (2016) for performance on tests. See Graff Zivin and Neidell (2009)
and Aldy and Bind (2014) for effects on demand for goods and services, such as for entertainment and tourism.
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Temporary labor market disruptions can also have lasting impacts on earnings and welfare, as

shown in numerous studies of displaced workers and labor market entrants (Jacobson, LaLonde

and Sullivan, 1993; Kahn, 2010; Oreopoulos et al., 2012; Borgschulte and Martorell, 2017). Many

workers in the United States have weak job protections when they or family members fall ill.9

Wages may respond to more serious illnesses due to lasting changes in workers’ productivity or

employment. We know of no evidence on the effects of such responses to air pollution, though

previous researchers have relied on such effects to motivate models of linkages between health and

labor markets. For example, lower wages may be an important source of earnings losses following

hospitalization (Dobkin et al., 2018).

1.2 Conceptual Model of Health and Labor Supply

To illustrate the multiple channels of action implied by the combination of direct health effects,

behavioral responses, and long-run wage effects, we build a stylized model of health and labor

supply to connect exposure to airborne pollutants with labor market earnings, our primary out-

come measure. We model the utility of a representative agent in response to a fixed dose-response

function, s(c), relating exposure to pollution concentration, c, to sick days, s. Pollution concentra-

tion may represent a vector of harmful components in wildfire smoke. An agent maximizes utility

that depends on consumption, X , leisure, l, sick days, s, and exposure, c:

maxX ,lU(X , l,s,c)

s.t. Y +wh≥ X

l = T − s−h

Consumption will equal non-labor income, Y , and earnings, wh. Wages respond to pollution,

w = w(c), due to a combination of responses through three channels: changes in the returns to

9The Family Medical Leave Act covered 59 percent of workers in 2012, and it allowed them to take up to 12
weeks of unpaid leave for their own serious health condition, or that of a spouse, parent, or child (Klerman, Daley and
Pozniak, 2012).
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work arising from a decay in human capital after an illness, the incidence of labor demand changes

on workers, and direct productivity effects during periods of high pollution. T reflects the total

time endowment, from which days of illness, s ≡ s(c), are directly subtracted. Hours of work,

h≡ h(w(c),c), respond to wages and direct avoidance of high pollution.

The resulting earnings function is E(c) = w(c) · h(w(c),s(c),c). Taking derivatives and re-

arranging yields a decomposition of the reduced-form effect:

dE(c)
dc

= w
[

∂h
∂s

ds
dc

+
∂h
∂c

]
+h

[
dw
dc

]
(1+ηs) (1)

The first bracketed term in equation (1) captures the direct effects of pollution on labor supply. The

first term inside the brackets, ∂h
∂s

ds
dc , denotes the loss of hours of work to illness, and the second term,

∂h
∂c , reflects avoidance behavior. The second bracketed term, dw

dc , captures the effect of pollution

on wages. The final term, (1+ηs), scales the endogenous labor supply response to changes in the

wage; as wages fall with pollution exposure, workers may reduce their hours of work. Thus, we

expect the effect of air pollution on earnings to be the sum of the effects working through the direct

effect on hours, and the combined effects on wages and the endogenous labor supply response.

The primary focus of the paper is on estimating dE(c)
dc , the total response of earnings to variation

in air quality. We also examine evidence for the components of the losses, especially the response

of hours through a labor force participation channel. Following our main estimates, in Section 5

we revisit equation (1) to guide our analysis of the welfare effects of lost earnings.

2 Data

2.1 Wildfire Smoke Data

A key innovation of our analysis is to link labor market outcomes to wildfire smoke exposure at

the county level. The daily smoke exposure data were originally developed by Miller, Molitor

and Zou (2021) using wildfire smoke analysis produced by the National Oceanic and Atmospheric
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Administration’s Hazard Mapping System (HMS). The HMS uses observations from the Geo-

stationary Operational Environmental Satellite, which produces imagery at a 1-km resolution for

visual bands and a 2 km resolution for infrared bands, to identify fire and smoke emissions over

the contiguous United States (Ruminski et al., 2006). Smoke analysts process the satellite data to

draw georeferenced polygons that represent the spatial extent of wildfire smoke plumes detected

each day. Plumes are typically drawn twice per day, once shortly before sunrise and once shortly

after sunset. We use the HMS smoke plume data from 2007 to 2019 to construct smoke exposure

at the county level for each day in this period. Our primary measure of smoke exposure is an

indicator for a county being fully covered by a smoke plume on a day. In Section 4.4, we describe

robustness checks in which we calculate smoke exposure based on the fraction of a county’s area

that is covered by smoke plumes.

2.2 Pollution Data

We obtain ambient air pollution data from the EPA’s Air Quality System. We use daily ground

monitor readings for EPA “criteria pollutants,” including fine particulate matter (PM2.5), coarse

particulate matter (PM10), ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur

dioxide (SO2). The EPA recognizes these pollutants as the most detrimental to human health.

To measure air pollution for a county, we take the weighted average of all valid readings for

each pollutant from monitors that fall within 20 miles of a county’s centroid; the weights are the

inverse of the distance between the monitor and the county centroid. This pollution measure is

missing for counties in which the nearest pollution monitor with a valid reading is outside the 20-

mile radius. Because there are more monitors for some pollutants than for others, data availability

differs by pollutant. For example, 1,837 counties in our sample have O3 data, but only 863 counties

have NO2 data. The 1,686 counties for which we can measure PM2.5 represent the area of residence

for over 85 percent of the U.S. population.
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2.3 Weather Data

In sensitivity checks, we flexibly control for weather patterns including temperature, precipita-

tion, and wind patterns. We acquire temperature and precipitation data from the Global Historical

Climatology Network of the National Climatic Data Center. The data provide daily, station-level

information on minimum temperature, maximum temperature, and total precipitation. To con-

struct weather conditions at the county level, we average daily weather readings from stations that

fall within 20 miles of each county’s centroid, weighting readings by the inverse of the distance

between the station and the county centroid.

We obtain data on wind speed and wind direction from the North American Regional Reanal-

ysis (NARR) of the National Centers for Environmental Information. NARR divides the United

States into 32km×32km grids, and for each grid-day it provides data on the east-west wind vector

(“u-wind”) and the north-south wind vector (“v-wind”), which together characterize wind speed

and direction. Given the resolution of the data, we construct wind conditions at the county level by

first linearly interpolating u-wind and v-wind vectors at the grid centroids to the county centroid,

and then converting u-wind and v-wind at the county centroid into wind speed and wind direction.

2.4 Labor Market Data

We measure quarterly labor market outcomes at the county level using data from two main sources

with national coverage. Our primary measures of earnings and employment come from the U.S.

Census Bureau Quarterly Workforce Indicators (QWI) dataset, which covers all workers except for

those who are members of the armed forces, self-employed, proprietors, and railroad employees.

The QWI provides information by age group and by two-digit industry codes, using the North

American Industry Classification System (NAICS), allowing us to measure effects separately for

younger and older workers and for workers in different industry sectors. Data on LFP are from

the Local Area Unemployment Statistics (LAUS) program of the U.S. Bureau of Labor Statistics.

LAUS provides county-level labor force counts for each month, which we aggregate to quarterly

averages to match the temporal frequency of the QWI earnings and employment measures.
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3 Research Strategy

Attempts to identify the causal effects of air pollution on labor markets face at least three pri-

mary challenges. First, observational correlations between air pollution and economic activity

may partly reflect the causal effects of economic activity on air pollution (reverse causality) or

some other factor that affects both economic activity and air pollution. These challenges can po-

tentially be overcome using an instrumental variables strategy, but a valid instrument in this setting

must be uncorrelated with unobserved determinants of labor market outcomes. For example, regu-

latory policies that reduce air pollution may impose direct effects on the regulated markets and are

thus unlikely to be valid instruments. Second, transient changes in air pollution may induce short-

run effects that reflect intertemporal substitution, rather than true welfare-reducing labor market

effects. Third, existing studies of how pollution affects labor markets have generally focused on

specific industries or regions. This approach is generally unable to capture effects on labor market

exits or shifts in labor market activity from one industry to another, and it also raises questions

about whether findings are nationally representative.

3.1 Wildfire Smoke and Air Quality

To address these challenges, we use variation in wildfire smoke exposure to identify the causal

effects of transient air pollution shocks on labor markets. Wildfire smoke plumes are a natural

source of air pollution and travel hundreds or even thousands of miles downwind, allowing us to

identify the effects of smoke exposure separately from direct damages caused by wildfire burns.10

Figure 1 maps the number of days each U.S. county was fully covered in smoke in each year of the

2007-2019 sample period. Over this period, counties experience an average of 20.2 smoke days

per year, on a population-weighted basis. Smoke exposure tends to be highest in states in the West

North Central Census Division but varies substantially from year to year.

We first characterize how smoke events map to ground-level air quality at the daily level. To

10Appendix Figure A.1 depicts an example of smoke exposure across much of North America during the Fort
McMurray fires in northern Canada. Fires in the U.S. Southeast also appear in the figure.
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do so, we conduct an event study by regressing the concentration of ambient fine particulate matter

(PM2.5) in a county c and on day d on a series of indicators for smoke exposure on each day within

20 days of the index day, using the following regression.

[PM2.5]cd =
20

∑
τ=−20

βτ ·SmokeDayc,d+τ +αc×day-of-year +αstate×year + εcd. (2)

Fixed effects for county by day of the year isolate year-over-year variation in smoke exposure at the

county level, absorbing county-specific seasonality. Fixed effects for state by year further account

for annual trends in smoke exposure, which may vary by state. The βτ coefficients trace out the

typical footprint of ground-level air quality surrounding a smoke day.

The daily-level event study helps illustrate the nature of a typical smoke shock in our data. In

part because air pollution may linger even after a smoke plume is no longer detectable by satellite,

the results from the daily event study specification may not map directly to the average effect of a

smoke event on air quality when measured over a longer time horizon. We therefore also estimate

the relationship between smoke exposure and PM2.5 at the quarterly level q, the time frequency

of the labor market analysis, using the following regression, which later will also serve as the first

stage of our IV estimation.

[PM2.5]cq = β ·SmokeDaycq +αc×quarter-of-year +αstate×year + εcq. (3)

Wind patterns that carry wildfire smoke to a region may also bring in pollution from other

sources. This does not necessarily pose an identification concern because even if this were the case,

our research design would nevertheless capture the effects of pollution shocks driven by plausibly

exogenous wind patterns. In this case, however, part of the effect we find could stem from upwind

pollution sources other than wildfires. To make the distinction between potential pollution sources,

we directly examine the extent to which wind patterns can explain the wildfire smoke effects we

document. Motivated by the research design in Deryugina et al. (2019), we examine the sensitivity

of the daily PM2.5 event study (Figure 2) to the inclusion of state- or county-specific wind direction
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bins in 60-degree increments. These flexible wind direction controls help us distinguish downwind

wildfire pollution from generally dirty wind patterns. We conduct the same set of sensitivity checks

for the quarterly labor market outcomes analysis (see Appendix Tables A.1 and A.2).

3.2 Wildfire Smoke and Labor Market Outcomes

We begin our analysis of the effects of pollution on labor market outcomes by analyzing reduced-

form relationships between smoke exposure and labor market outcomes. The main estimation

equation we implement is as follows:

∆Ycq = β ·SmokeDaycq +αc×quarter-of-year +αstate×year + εcq, (4)

where the outcome ∆Ycq is the change in the labor market outcome for county c in quarter q from

the same quarter-of-year in the previous year. The focal dependent variable, SmokeDaycq, counts

the number of days that the county is fully covered by smoke plumes; thus, β reflects the effect of

an additional day of wildfire smoke in the exposed county on the outcome variable. The remaining

regression terms are as in equation (3). We weight regressions by county-year level population

counts and two-way cluster standard errors at both the county and state-by-quarter levels. Unless

noted otherwise, we use the same econometric specification as outlined in equation (4) throughout

our analysis of the labor market effects of smoke exposure and air pollution.

Before proceeding, we wish to discuss two key features of the model. Our first comment re-

gards the choice of using annual first difference in labor market outcome (∆Yct) as the dependent

variable. Our study sample spans a 13-year horizon (2007-2019), covering the 2008-2009 reces-

sion and the subsequent decade when both income and employment were recovering. To control

for differential time trends in the long panel, we measure labor market response as the change in

earnings, employment, or LFP from year t− 1 to t for the same county and the same quarter of

the year. An alternative but less parsimonious approach is to use levels of labor market outcomes

as the dependent variable while controlling for county-specific time trends in the regression. We
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report this as a robustness specification in Appendix Table A.1, along with specifications in which

both the outcome and focal dependent variable are first-differenced.

Second, our specification effectively treats the panel unit of our study to be a county by the

quarter of the year (e.g., Orange County in the summer). With the inclusion of the county-by-

quarter-of-year fixed effects (αc×quarter-of-year), our estimation equation exploits year-over-year

variation in smoke days within the same county and during the same season of the year. Note

that we do not exploit variation in smoke from one quarter to the next (e.g., comparing the first

quarter of 2015 to the second quarter of 2015) because wildfire smoke follows seasonal patterns,

with most smoke days concentrated in the summer and early fall. In addition, we include state-by-

year fixed effects to control for state-specific common shocks and to capture time-varying changes,

such as the Great Recession, at the state level.

We also perform a range of additional sensitivity checks on our specification choice. Because

geographically larger counties have a lower probability of being fully covered by smoke, we con-

duct a robustness check in which the dependent focal dependent variable is the sum of the fraction

of the county covered by smoke on each day in the quarter (Section 4.4). We also examine dy-

namic specifications by augmenting the main estimation equation (4) with two leads and two lags

of SmokeDaysct .11 The dynamic specification coefficients on lagged smoke exposure describe

whether the effects of smoke persist after the year of exposure. Coefficients on lead terms provide

a “placebo” check on the effect of next year’s smoke on this year’s pollution and labor market

responses, which we expect to be close to zero because outcomes should not be influenced by

quasi-random future smoke shocks. A disadvantage of the dynamic specification is that we draw

down the sample size as we add leads and lags of smoke exposure.

Next, we test whether the reduced-form relationships between outcomes and smoke exhibit a

systematic, “dosage” pattern by exploiting variations in the cumulative number of days exposed in

a given quarter. This is done by estimating a nonlinear version of the β coefficient in equation (4)

11The exact estimation equation we implement is ∆Ycq = βτ · ∑τ∈[−2,2] SmokeDaycq(y+τ) + αc×quarter-of-year +
αstate×year + εcq where SmokeDaycq(y+τ) represents smoke exposure for the same county×quarter-of-year but during
the τth year relative to the current year.
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via a Frisch–Waugh–Lovell-style procedure: we first residualize both the outcome variable (∆Ycq)

and smoke exposure (SmokeDaycq) by the fixed effects controls, and then calculate the averages of

the residualized outcome by 10 equal bins of residualized smoke. The resulting nonlinear estimates

illustrate how labor market outcomes respond to smoke shocks of varying intensity, thus provid-

ing an opportunity to test if the average effect of smoke (β) is driven by systematic relationships

between exposure and outcomes, or by extreme, and potentially outlier, exposure events.

We explore the robustness of our results to a variety of additional specifications including

alternative definitions of smoke exposure, the inclusion of flexible weather controls, alternative

fixed effects controls, alternative data frequency (annual data analysis), alternative specifications

of the outcome variable and time trends controls, and alternative standard error clustering choices.

We repeat the same set of sensitivity checks with the IV estimation. We defer more details to

Section 4.4 where we discuss these results.

3.3 Instrumental Variables Estimation

Drifting wildfire smoke provides a natural context to estimate the causal effect of air pollution on

labor market outcomes using an instrumental variables (IV) framework. Consider the relationship

between a labor market outcome Ycq and ambient air quality as measured by PM2.5 concentration,

as given by the following equation:

∆Ycq = θ · [PM2.5]cq +αc×quarter-of-year +αstate×year + ecq. (5)

If [PM2.5]cq is endogenous or measured with error, OLS will produce a biased estimate of θ, the

effect of air pollution on labor market outcomes. To address these issues, we use an IV estimation

strategy that leverages quasi-experimental variation in pollution driven by wildfire smoke exposure.

Our first stage estimation equation is (repeating equation (3)):

[PM2.5]cq = β ·SmokeDaycq +αc×quarter-of-year +αstate×year + εcq. (6)
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This is therefore a just-identified IV model with one excluded instrument (SmokeDaycq), which

we implement using the standard two-stage least squares (2SLS) estimation approach. A central

identifying assumption for the IV approach is that the exclusion restriction holds. That is, we as-

sume that, conditional on the fixed effects, the presence of wildfire smoke may only affect earnings,

employment, and LFP through its impacts on air pollution. Our identification thus relies on the

fact that an area’s year-over-year variation in smoke exposure is driven largely by quasi-random

factors (including the location and magnitude of fire events and shifting wind patterns), and it is

unlikely to be correlated with unobservable determinants of labor market outcomes.

There are two potential counter-arguments to the exclusion restriction assumption. First, while

quasi-random smoke shocks are unlikely to be correlated with economic determinants of labor

market outcomes, they might interact with local atmospheric conditions, such as air temperature

and precipitation, which can have independent impacts on worker productivity. In practice, we find

that controlling flexibly for weather variables (by including bins of air temperature, precipitation,

wind direction, and wind speed) has little impact on our smoke effect estimates. The inclusion of

many weather controls, however, reduces the strength of the first stage of the IV estimation. In our

main analysis, we have chosen to use the parsimonious specification with no weather controls, and

we report sensitivity checks with weather controls in the Online Appendix.

A second concern involves the interpretation of the IV estimate as the causal effect of PM2.5

specifically, as opposed to the effect of bad air quality in general as proxied by PM2.5. Wildfire

smoke contains a complex mix of air pollutants (e.g., Urbanski, Hao and Baker, 2008), and it is

thus problematic to interpret the IV estimate to be the independent effect of any particular pollutant,

an issue that pertains to many studies of the impact of air pollution. To illustrate the empirical

variation, we examine the typical pollution mix of smoke exposure by repeating the daily event

study analysis of equation (2) for six “criteria air pollutants” (PM2.5, PM10, O3, CO, NO2, and

SO2) recognized by the U.S. EPA to be among the most harmful to human health. To facilitate

comparisons across different pollutants, we estimate the event studies in which the outcome is the

measured concentration for each pollutant, standardized to have a mean of zero and a standard
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deviation (SD) of one. Appendix Figure A.3 shows that PM2.5 exhibits the largest single-day spike

on the smoke day by nearly 40 percent of a standard deviation. The next-largest increases are

observed for PM10 and O3, both increasing by over 25 percent of a standard deviation. Much

smaller changes are observed for CO, NO2, and SO2 (less than 10 percent of a standard deviation).

These results suggest that particulate matter is the signature emission of wildfires; at the same time,

because all six pollutants show significant increases, caution should be taken attributing the effect

of smoke on labor market outcomes to the independent effect of any particular pollutant.12

Finally, the relevance condition for IV estimation holds in our setting because smoke exposure

is a strong predictor of ground-level air pollution. This is true both in the daily event study and

at the quarterly level at which we conduct the main labor market analysis. As we report in more

detail below, the first stage Kleibergen-Paap F-statistic is over 71 in our preferred IV specification.

4 Results

4.1 Air Quality Effects

Figure 2 reports the event study coefficients βτ’s of equation (2), which traces out the typical

footprint of ground-level PM2.5 levels in the 20 days before and 20 days after a smoke day. Smoke

days are associated with elevated levels of PM2.5 for four days, with an average increase of 2.19

µg/m3 on the day of exposure, about one-third of a standard deviation in county-daily PM2.5

concentrations.13

The relationship between smoke exposure and PM2.5 can also be detected at the quarterly level,

which is the time frequency at which we conduct the labor market analysis. Column (1) of Table 1,

12While it is difficult to find quasi-experimental variation of one pollutant while holding other pollutants constant, in
Appendix Table A.3 we report the results of a multivariate OLS exercise that regresses earnings on multiple pollutants.
We find evidence that PM2.5 tends to be the most robust, negative predictor of earnings when estimated jointly with
other pollutant(s) as covariates.

13In Figure 2, the mild increase in ground-level PM2.5 on the day prior to a measured smoke day is likely due to
the temporal frequency at which HMS smoke data were generated: satellites scan for smoke periodically during the
daytime, whereas pollution monitors report a 24-hour average. So, when plumes move in overnight, they will show
up as an increase in pollution at t = −1. This feature of the data represents a measurement error that is expected to
attenuate our findings, as some of the non-smoke days in our data might in fact see mild increases in wildfire pollution.
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Panel A, reports that increasing cumulative smoke exposure in the quarter by one day increases

quarterly average PM2.5 by 0.056 µg/m3. This is equivalent to increasing PM2.5 by 5 µg/m3, or

more than two times the single-day effect size. Consistent with the pattern of Figure 2, this also

implies that particulate matter lingers in the air, increasing pollution levels on days that are not

coded as “smoke exposure” days in the satellite data.

The magnitude of our estimates suggests most wildfire smoke events induce modest changes

in air quality that are often not visible to the human eye. This underscores that our labor market

estimates are not driven by a small number of days during which people are exposed to extremely

intense smoke, which can generate substantial news coverage, possibly triggering behavioral re-

sponses that would not be present with normal sources of air pollution. Instead, the vast majority

of smoke exposure days in our data lie within the normally experienced levels of air quality, help-

ing to allay this concern. From Figure 2, smoke days are associated with increases of just over 2

µg/m3 on the day of exposure relative to the daily mean of 10.2 µg/m3. To put this into context,

the EPA’s annual standard for PM2.5 is 15 µg/m3, while the daily PM2.5 standard is 35 µg/m3,

which are far above most exposure levels. Thus, although wildfire smoke is a unique source of

pollution, it seems plausible that behavioral responses to smoke—especially far from the fires

themselves—will be similar to those caused by other fluctuations in air quality.

4.2 Earnings Effect

Panel A of Table 1 reports our main earnings effect estimate in column (1). Each day of wildfire

smoke exposure in a county reduces per capita earnings by $5.20 in the quarter, which represents

a 0.097 percent reduction from quarterly mean earnings of $5,359.70.

Panels B and C of Table 1 report OLS and IV estimates, respectively, of the effect of PM2.5

on earnings. The number of observations decrease from those in Panel A because the estimation

is restricted to counties with pollution monitoring data. Column (1) of Panel B shows that a one

unit (1 µg/m3) increase in quarterly PM2.5 concentrations is associated with a significant reduction

of $10.6 in per capita quarterly earnings. Column (1) of Panel B shows that the IV estimate is
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$103.1 (representing a reduction of about 1.81 percent), an order of magnitude larger than the OLS

estimate.

If one assumes that the effect of marginal smoke days reflects the average effect of all smoke

days, our earnings estimates imply large effects of wildfire smoke on labor income at the national

level. In 2010, approximately 160 million U.S. workers earned a total of $6.4 trillion (in 2018

dollars). To estimate the total earnings losses from a typical year of smoke exposure, we multiply

annual earnings by both the estimated reduction of 0.097 percent in earnings per day of smoke

exposure and by the average number of smoke days per year (20.2) in our sample. This gives

total earnings losses of $125.4 billion (about 1.96 percent of annual earnings) per year of smoke

exposure.

Another way to assess the magnitude of our results is to compare our IV estimates to the find-

ings of prior studies on the effect of pollution on labor market outcomes. Studies in this area vary

substantially in both research design and context, including the study country, time periods, indus-

try focus, measures of labor market outcomes, the type of pollutants examined, and background

pollution exposure levels. We make a simplifying choice and conduct comparisons using a mea-

sure of “pollution elasticity,” that is, the percentage change in a labor market outcome per 1 percent

change in the level of pollution being studied. Our analysis finds that a 1 µg/m3 (approximately 10

percent) increase in quarterly PM2.5 concentrations generates losses of per capita earnings amount-

ing to $103, or about 1.81 percent of quarterly earnings. The implied elasticity of our estimate is

thus about −0.18.

Most prior work in this area focuses on the effect of short-term (daily or weekly) variation in

air pollution on piece-rate workers. Graff Zivin and Neidell (2012) find that a 10 ppb increase in

average ozone over a 9-hour period reduces output by 5.5 percent among outdoor fruit packers in

California (an elasticity of −0.26). Chang et al. (2016) show that a 10 µg/m3 increase in daily

PM2.5 leads to a 6 percent output reduction for indoor fruit packers in California (an elasticity of

−0.062). Chang et al. (2019) study call center workers in a large urban city in China and find a 10

unit increase in the city’s daily Air Pollution Index leads to a decrease of 0.35 percent in worker
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output (an elasticity of −0.023). Adhvaryu, Kala and Nyshadham (2022) study the effects on

garment manufacturing workers in India, showing each 10 unit increase in hourly PM2.5 reduces

worker output by 0.5 percent (an elasticity of −0.052). He, Liu and Salvo (2018) use data on

textile manufacturing workers in a heavily polluted industrial town in China and show an output

reduction of 1 percent per 10 µg/m3 PM2.5 of sustained exposure during the previous month (an

elasticity of −0.30). Aragón, Miranda and Oliva (2017) examine weekly household survey data in

Peru and document a 2 percent reduction of weekly hours worked per 10 percent increase in PM2.5

exposure in the previous week (an elasticity of −0.20).

Relatively fewer studies have examined longer-term effects of pollution exposure that leverages

annual or permanent changes. Hanna and Oliva (2015) leverage changes in air pollution due to the

closure of a large refinery in Mexico City and estimate that a 10 percent decrease in SO2 concentra-

tions increased hours worked by 1.5 percent (an elasticity of −0.15). Fu, Viard and Zhang (2021)

study a nationwide sample of manufacturing firms in China and show a 0.44 percent reduction in

firms’ yearly productivity (measured by value added per worker) per 1 percent increase in PM2.5

in the year (an elasticity of −0.44). Isen, Rossin-Slater and Walker (2017) exploit regulations of

total suspended particulates (TSP) under the 1970 Clean Air Act and estimate that a 10 percent

increase in exposure to TSP in childhood has negative effects on income levels 30 years later, with

earnings about 1 percent lower (an elasticity of −0.10).

Though our study differs from each of these prior studies in many respects, the elasticity of

−0.18 that we find is the same as the average elasticity of −0.18 across these 9 prior studies. Our

findings are based on national data covering income from nearly every industry, while many of

the prior studies focused on narrower industry or output categories; thus, the similarity in findings

suggests that air pollution affects labor markets broadly, and not just in narrowly defined settings.

4.3 Extensive Margin Responses

Next, we examine whether transitory air pollution episodes leave lasting impacts on labor markets.

Our model in Section 1 highlights two channels through which such lasting impacts could occur.
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First, air pollution may cause health events, such as asthma episodes or heart attacks, which lead

to chronic health conditions. These chronic conditions may reduce workers’ productivity and the

labor supply, or may even cause workers to leave the labor force altogether. Second, diminished

health, whether temporary or chronic, may affect one’s opportunities in the labor market. A large

literature in labor economics documents the lasting effects of job loss, suggesting that particularly

large losses may occur with changes in the extensive margin of labor force attachment.

We use equation (4) to test for extensive margin responses to smoke exposure. We first estimate

the effect of smoke on employment as measured by the QWI. In Table 1, column (3) of Panel

A reports that each day of wildfire smoke reduces quarterly employment in the county by 79.6

per million individuals aged 16 and over, a 0.013 percent decline relative to the sample average

employment rate of 62.6 percent. Furthermore, as reported in column (4) of Panel A, each day of

wildfire smoke reduces LFP in the county by 38.7 per million people.

The extensive margin results provide additional support for a conclusion of significant income

losses due to smoke exposure. If those who lose employment earn average incomes, and if the

reduction in labor supply lasts one quarter, the employment effects of a day of smoke exposure

would reduce quarterly income by 0.013 percent. By comparison, each day of smoke exposure

reduces quarterly income by 0.097 percent (Table 1, Panel A, column (2)). Thus, the employment

reductions due to smoke can account for over 13 percent (0.013/0.097) of the total income effect of

smoke exposure. This calculation illustrates the potential for relatively small but recurring shocks

to employment to have sizeable effects on total earnings.

4.4 Robustness Checks

Dynamic specification. In Figure 3, for each of the four outcomes (PM2.5, earnings, employ-

ment, and LFP), we report dynamic specifications that include the effect of the next years’ exposure

to smoke on this year’s outcome (thus describing effects in event years t−1 and t−2, providing a

placebo check) and the lagged effects of previous years’ exposure to smoke (describing effects in

event years t +1 and t +2).
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The patterns in Figure 3 reveal significant effects of smoke in the year of exposure (event year

t). Panels A and B suggest that each day of smoke exposure leads to an increase in PM2.5 of

0.053 µg/m3 (p-value < 0.01) and earnings losses of $7.50 per capita (p-value < 0.01). On the

same graph, we superimpose the static estimates from Panel A of Table 1. Overall, the dynamic

estimates for year t resemble their static counterparts. The small point estimates of the effects

of smoke in event years t + 1 and t + 2 suggest that the earnings effects of smoke do not have

significant lags, but instead are concentrated during the year of exposure. Moreover, the estimated

effects of future smoke in event years t−1 and t−2 are negligible, consistent with quasi-random

smoke exposure events. In the case of LFP, the year t coefficient is no longer statistically significant

once conditional on the leads and lags of exposure; the dynamic pattern of LFP effects aligns with

those of the earnings and employment effects but it is more noisily estimated.

Nonlinear specification. Figure 4 reports the decile bin scatterplot of the first-stage and reduced-

form estimates in Panel A of Table 1. By construction, the slopes of the superimposed linear fit

lines equal the corresponding coefficients in Table 1. We find that PM2.5 and earnings effects are

approximately linear in the number of days of smoke in a quarter. The patterns for the employment

and LFP effects are relatively less clear-cut, although we cannot reject a linear relationship in either

case. Overall, we conclude that the labor market effects we identify in this paper are driven by

typical pollution shocks rather than by a few extreme exposure events.

Other robustness specifications. We report a series of additional robustness checks in Appendix

Table A.1. In Panel A, we recode county’s smoke exposure on any given day as the fraction of the

county’s land area covered by smoke plumes (rather than by an indicator for whether the county

is entirely covered); we then build the quarterly smoke measure by adding up these fractions. In

Panel B, we estimate models with flexible weather controls. Regressions in the first row include

10-degree Fahrenheit bins of daily temperature, decile bins of quarterly total precipitation, 60-

degree angle bins of daily prevailing wind direction, and decile bins of daily average wind speed.

The second and third rows include wind direction controls fully interacted with state and county
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fixed effects (see discussion in Section 3.1). In Panel C, we test sensitivity to fixed effects strategies

by replacing the state-by-year fixed effects with Census Division-by-year fixed effects (the second

row), Census Region-by-year fixed effects (the third row), and year fixed effects (the fourth row).

Note that the relaxation of fixed effects controls increases the overall amount of variation used in

the estimation, but potentially introduces bias if regional smoke trends are correlated with labor

market trends. In Panel D, we aggregate quarterly pollution and labor market outcomes to a yearly

frequency and estimate the effect of smoke exposure on outcomes at the annual level. In Panel

E, we report specifications with levels of labor market outcomes (instead of first differences) as

the dependent variables, both with and without county-specific linear time trends controls; we also

report robustness specifications in which all labor market outcomes, pollution, and smoke variables

are first differenced. In Panel F, we vary our choice of standard errors clustering in various ways.

In Appendix Table A.2, we repeat the same set of robustness checks with the IV model.

Our findings are generally robust across these specifications, but we mention a few exceptions

from Appendix Table A.1. Panel C shows that, in the quarterly analysis, results change little

whether controlling for time patterns (year fixed effects) that are allowed to vary at the state,

Census Division, Census Region, or national levels. However, as shown in Panel D, annual-level

regressions are more sensitive to this choice. The second row of Panel E reports that the estimated

effects on earnings and employment become smaller and change sign, respectively, in a model

in which the outcomes are specified in levels and in which county time trends are omitted. Both

sets of findings indicate that while it is important to account for region-specific time trends in the

analysis, various ways of doing so produce similar findings.

Migration responses. Another potential concern is whether smoke exposure may change the

underlying population composition. We believe this is unlikely because smoke exposure causes

transient, modest changes in daily air pollution. To directly test whether year-over-year changes

in smoke affect migration into and out of a county, we use the Internal Revenue Service (IRS)

Statistics of Income (SOI) county-to-county population flow data to measure in-migration and
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out-migration at an annual frequency. We also measure changes in population size using the total

number of tax exemptions claimed in an area. The results, reported in Appendix Table A.4, indicate

that population migration does not respond to smoke exposure to an economically or statistically

significant degree. The lack of a population migration response to smoke exposure suggests that

our main effects are not artifacts of regional changes in population composition.

4.5 IV Estimates by Age and Industry

In this section, we report IV estimates of the effect of PM2.5 on earnings by age and industry. This

analysis leverages the QWI’s earnings breakdown by 10-year age groups (25-34, 35-44, 45-54,

55-64, and 65 and older) and two-digit NAICS sectors. The estimation follows exactly the 2SLS

steps outlined in equations (5) and (6), except that in age group-specific IV estimation we replace

all-age population weights by the population of the corresponding age group.

Panel A of Figure 5 reports estimated earnings effects separately by age groups. We find that

PM2.5 reduces earnings across all age groups. Not surprisingly, larger absolute effects emerge for

middle-age workers who earned the most.14 However, we also detect precise and disproportionate

earnings losses due to pollution for elderly workers. On a percentage basis, the largest earnings

response to pollution is observed for individuals aged 65 and older. Because the health of older

workers may be more sensitive to pollution shocks, smoke effects may be strongest among older

workers, potentially generating losses associated with labor market transitions and retirements.

Panel B of Figure 5 reports heterogeneity across 20 industries, as delineated by the 2-digit

NAICS code. To adjust for multiple hypothesis testing, we control for the family-wise error rate

based on 100 bootstraps of the free step-down procedure of Westfall and Young (1993), as im-

plemented by Jones, Molitor and Reif (2019). The figure highlights industries with an adjusted

p-value less than 0.05.

We point out two connections between our industry-specific results and the prior literature.

14Average quarterly earnings for each age group are as follows: $7,178 (ages 25–34), $10,203 (ages 35–44), $10,796
(ages 45–54), $8,342 (ages 55–64), and $1,671 (ages 65 and above).
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First, we find that manufacturing is among the most responsive industry to air pollution shocks.

Each 1 µg/m3 increase in quarterly PM2.5 reduces earnings by 2.4 percent, which implies an elas-

ticity of −0.24. As we discussed in Section 4.2, a significant share of the prior literature has ex-

amined the effect of air pollution on labor market outcomes in the manufacturing sector. Perhaps

the closest study in terms of scale is Fu, Viard and Zhang (2021), who found an annual pollution-

productivity elasticity of −0.44 among a large sample of firms the Chinese manufacturing sector.

Other studies that use high-frequency output measures of manufacturing workers in various con-

texts have found pollution elasticities ranging from −0.05 to −0.30 (Aragón, Miranda and Oliva,

2017; He, Liu and Salvo, 2018; Adhvaryu, Kala and Nyshadham, 2022). Our manufacturing sector

estimate is therefore broadly in line with the prior literature.

Second, we find little evidence that air pollution reduces earnings in the overall agricultural sec-

tor. In contrast, some of the pioneering work in this field has established a significant link between

day-to-day changes in air pollution and a reduction in productivity among piece-rate agricultural

workers such as fruit packers (Graff Zivin and Neidell, 2012; Chang et al., 2016). One potential

explanation is that the agriculture sector in our data is very broadly defined, spanning sectors such

as crop and animal production, logging, and fishing. To further investigate the difference, we use

QWI data’s three-digit NAICS breakdown to estimate separate pollution effects for the five subsec-

tors of the agricultural industry: crop production (NAICS 111), animal production and aquaculture

(NAICS 112), forestry and logging (NAICS 113), fishing, hunting and trapping (NAICS 114), and

support activities for agriculture and forestry (NAICS 115). Because earnings are not available at

three-digit NAICS level, we instead use employment as the outcome measure for this analysis. Ap-

pendix Table A.5 reports IV estimates by agricultural subsector. Column (1) shows a statistically

insignificant effect of air pollution on the overall agricultural sector. However, breaking this effect

down by subsector reveals concentrated effects for crop production (column (2)); precise zeroes for

animal production, forestry and logging, and fishing and hunting (columns (3)–(5)); and negative

but imprecise effects for support activities (column (6)). The effect we detect for crop production,

which includes most farming activities, broadly aligns with the findings of the prior literature on
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agricultural workers. The magnitude of the crop sector effect has an implied pollution elasticity

of −0.18. By comparison, Graff Zivin and Neidell (2012) examine the influence of day-to-day

fluctuation of ozone pollution on daily productivity among pear packers and find an implied ozone

elasticity of −0.26.

Beyond manufacturing and agricultural, our estimates also reveal significant negative earnings

effects of pollution exposure in other sectors, such as utilities, health care, real estate, administra-

tion, and transportation. We find no evidence that any sector experienced significant increases in

earnings in response to pollution exposure. However, more research is needed to understand why

certain sectors are more vulnerable to pollution exposure than others.

4.6 Heterogeneity by County Characteristics

To shed light on the conditions under which labor markets are the most sensitive to pollution

shocks, we explore how the effects of wildfire pollution vary with county characteristics. To do

this, we create indicators for whether a county is above- or below the median with respect to each of

five characteristics: urban population share, fraction of population in poverty, median home value,

Black population share, and the sample average PM2.5 concentration (as a proxy for the area’s

general air quality). For each characteristic, we estimate heterogeneity in the earnings effects of

smoke exposure using an augmented version of equation (4) that fully interacts the smoke exposure

variable with an indicator for whether the county is above the median for the characteristic.

Table 2 reports the results of this heterogeneity analysis. Columns (1)–(5) report separate

regressions in which we examine heterogeneity with respect to one characteristic at a time. Column

(6) reports a joint regression in which the interaction terms with all five characteristics are included

simultaneously. Among the characteristics we examine, the only statistically significant margin of

heterogeneity emerges for the racial composition of the county (column (4)). The point estimates

suggest that smoke-induced declines in earnings are about 59 percent larger in counties that have

an above-median proportion of Blacks. We obtain similar results in the joint estimation of column

(6) which, in addition to the heterogeneity finding on racial composition, suggests that smoke
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causes more declines in earnings in less-urban areas, although the point estimate is only marginally

significant (p-value < 0.10).

5 Welfare

5.1 Air Pollution and Welfare

In this section, we provide a back-of-the-envelope calculation on the social welfare costs associ-

ated with lost earnings due to wildfire smoke exposure, and we compare this to the welfare costs of

premature deaths caused by smoke exposure. Lost earnings themselves do not necessarily equate

to reductions in social welfare for two primary reasons. First, lost earnings coming from reduc-

tions in labor supply inflate deadweight losses associated with preexisting tax distortions in labor

markets. Second, some portion of the lost earnings may be explained by increased leisure or by the

replacement of market work with home production, such as if workers stay home on high pollution

days, or if they are forced into early retirement by smoke-related illness.

The double dividend through increased labor income. Studies in public and environmental

economics consider how air pollution regulation interacts with the tax-distorted labor market.

While taxes on pollution may or may not generate any benefits in the labor market (Goulder, 1995;

Fullerton and Metcalf, 2001), pollution regulations that improve labor incomes through health and

productivity channels can produce a “double dividend” (Schwartz and Repetto, 2000; Williams III,

2002, 2003). This source of welfare gains arises because increases in labor supply alleviate preex-

isting tax distortions associated with payroll and income taxes.

Calibrating the changes in welfare through this channel is straightforward in partial equilib-

rium. On the margin, increases in labor supply reduce deadweight loss by an amount that equals

the change in labor times the average marginal tax rate for affected individuals. While we do not

directly measure this tax rate in our sample, we can take a moderate value of 25 percent to calculate

that welfare increases by one-quarter of the total loss, or $31 billion of the $125 billion.

28



Individual welfare. For individual welfare, we can perform a simple calculation building on the

models in Section 1 and in Dobkin et al. (2018) and from estimates reported in Table 1. To focus

attention on the labor market costs, we separate workers’ losses that occur through consumption

and leisure (X and l) from direct losses arising from changes in health and amenities (s and c).

We label utility from consumption and leisure as ULM(X , l). Normalizing by the marginal utility

of consumption gives the labor market component of welfare, W LM. In the next subsection, we

return to the issue of costs arising from illness. We also simplify the model by dropping avoidance

behavior, and focusing on the longer-run losses of the earnings analysis. Individual welfare losses

arise from endogenous labor supply responses, reductions in the wage, and reductions in the time

endowment due to illness. Social welfare losses include these changes in addition to changes in

deadweight loss (i.e., the double dividend channel).

Considering a small change in pollution concentration, c, the loss in money-metric utility to

the worker is
dW LM

dc
≡ dULM/dc

MUx
= h

dw
dc
−w

ds
dc

.

The first term reveals that a wage change leads to a welfare loss proportional to labor supply,

h. Intuitively, a lower wage directly subtracts dollars from consumption; then, hours change in

response to reflect a re-optimization at this lower utility frontier. The second term reflects the direct

loss of time due to illness, valued at the wage. We can then take the ratio of the above individual

welfare loss to the lost earnings to calibrate the appropriate scaling of the earnings losses.

Absent detailed data on time use and illness, some assumptions are required to calibrate the

percentage of share of earnings losses that reflect true welfare costs to individuals. We focus on

the case in which all responses arise from changes in the wage, as in Dobkin et al. (2018), but

also consider changes in the time endowment to provide an informative upper bound. Specifically,

individual welfare losses as a share of earnings losses lie between the wage response, 1
1+ηh,w

, and

an upper bound of unity, the case when all earnings losses reflect time spent sick. Should welfare

costs arise entirely due to changes in the wage, we can take a conservative value of the labor

supply elasticity, ηh,w = 0.5 (drawing from Keane (2011), as in Dobkin et al. (2018)), to estimate
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that two-thirds of the earnings losses reflect true costs to the worker.

Social welfare. Social welfare combines both individual welfare losses and changes in dead-

weight loss from taxation. In the case in which earnings losses arise from responses to the wage,

social welfare losses are the sum of individual losses and the deadweight loss of the labor supply

response due to taxation, which can be calculated by multiplying the marginal tax rate by the dif-

ference between earnings responses and the individual welfare loss.15 Assuming a marginal tax

rate of 25 percent and ηh,w = 0.5 implies a social welfare effect of 75 percent (two-thirds from

labor supply plus one-twelfth from deadweight loss) of lost earnings.

Applying the above model to the estimates reported in Table 1, we find that the welfare losses

working through labor market responses are $94 billion in 2018 dollars. The lasting damage to

labor market opportunities shows up as lower wages; this may reflect either reduced health capital

following an acute smoke-induced illness (i.e., lower productivity of workers following the health

shock), or worker transitions to lower-paid jobs induced by illness or labor-demand effects. Losses

may approach an upper bound of $125 billion if responses occur entirely through perfectly inelastic

responses, as when workers are constrained from working by illness. Alternatively, at a lower

bound where all lost income arises from perfectly elastic labor-supply responses, social welfare

falls by 25 percent of lost earnings, or $31 billion. We regard this scenario as unrealistic; it is

informative primarily because it generates important welfare responses entirely through the double

dividend channel, and applies under the most pessimistic model of individual behavior. Costs

associated with mortality, health care expenditures, the disutility of smoke-induced illness, and

other costs would then be added to this figure to reach the total damage done by wildfire smoke.

The calculation above focuses on the cost of wildfire smoke exposure. To facilitate our dis-

cussion in the next subsection, we also use our IV estimate to quantify the welfare impact of a

unit increase in PM2.5. Our preferred IV estimate in Table 1 shows a quarterly loss of per capita

earnings of $103 per one unit increase in PM2.5. Extrapolated to the annual level, this estimate im-

15Intuitively, lost earnings that arise from a labor supply response are replaced by leisure in the individual’s utility.
However, this leisure is subsidized by the government at the marginal tax rate, leading to deadweight loss.
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plies a per capita earnings loss of $412, or a national total of $123 billion. Our preferred estimate

of the social welfare loss of a 1 µg/m3 increase in PM2.5 is thus about $92 billion per year. Our

lower-bound estimate of the welfare effect (25 percent of lost earnings) is $31 billion per year.16

5.2 Comparison with Mortality Costs

We now evaluate the importance of incorporating labor market effects into estimates of air pollution

costs by benchmarking the costs of lost earnings to those of premature deaths due to pollution. We

draw causal PM2.5-mortality estimates from Deryugina et al. (2019), who show that a 1 µg/m3

increase in PM2.5 for one day causes 0.69 additional deaths per million elderly individuals aged 65

and up over the next three days, representing a 0.18 percent increase relative to the average 3-day

mortality rate of the study population. Scaling the daily mortality effects linearly to the annual

level, this estimate implies that a 1 µg/m3 increase in annual PM2.5 causes 3,383 additional deaths

annually among the 40.3 million people 65 and older in 2010.

To convert the number of premature deaths to a mortality cost, we consider two alternative value

of statistical life (VSL) estimates. First, the EPA uses a value of $9.25 million (in 2018 dollars) per

statistical life regardless of population characteristics such as age, implying annual mortality costs

of $31.3 billion. Second, we use a more conservative value of $2.4 million per statistical life that

accounts for lower-than-average life expectancy among adults ages 60 and older. We calculate this

by multiplying $150,000 per year of life lost (Cutler and Richardson, 1999) in 2018 dollars by the

average remaining life expectancy of 16.1 years among this population.17 This second VSL value

implies annual mortality costs of $8.1 billion.

In additional analyses reported in the Online Appendix, we also consider a complementary

approach to benchmark the costs of lost earnings to those of premature deaths by directly esti-

mating the effect of smoke on mortality. Using county-monthly mortality data from the National

16Implicitly, we consider a homogeneous treatment effects model to extrapolate from our estimates to annual,
national effects. Alternatively, our estimates can be interpreted as a local average treatment effect (LATE) for the
compliers—those counties that see an increase in particulate matter due to smoke exposure.

17We calculate average life expectancy within each age group from the 2014 period life table for the Social Security
Area population https://www.ssa.gov/oact/STATS/table4c6.html#ss (accessed on September, 2017).
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Vital Statistics System, we show that smoke exposure elevates elderly mortality, with an implied

mortality cost of $5.2 billion to $19.9 billion annually per 1 µg/m3 increase in PM2.5—a finding

that is similar to the estimate we derive using Deryugina et al. (2019) as the basis of our calcula-

tions. The mortality effects we estimate are noisy, however, when we aggregate the analysis to the

quarterly frequency, the temporal level of our labor market analysis. We relegate full details of this

analysis to the Online Appendix and use mortality costs derived from Deryugina et al. (2019) as

our preferred estimate.

To sum up, we find that the annual mortality costs of air pollution ($8.1 billion to $31.3 billion

per 1 µg/m3 increase in PM2.5) are lower than the lost labor market earnings ($123 billion) and

similar to or lower than our preferred estimate of $92 billion in welfare costs of these lost earnings.

Even our lower bound of $31 billion in welfare costs due to lost earnings is on par with the highest

estimates of the mortality costs. While these calculations are imprecise in nature and are only

intended to facilitate an order-of-magnitude comparison, they suggest that labor market responses

comprise a large share of the welfare costs of wildfire smoke, and that such costs should be taken

into account when evaluating the overall costs of air pollution and efforts to limit it.

6 Discussion and Conclusion

Wildfires emit large amounts of smoke that contains harmful pollutants and can drift for hundreds

or thousands of miles, regularly affecting populations far from the fires themselves. We analyze

variation in wildfire smoke exposure across the United States and find that increases in smoke

exposure cause significant decreases in earnings and employment outcomes. We leverage plausibly

exogenous variation in smoke exposure to produce national estimates of the causal effects of air

pollution on labor market outcomes. Our analysis suggests that the welfare costs of lost earnings is

similar to or larger than the costs of increased mortality due to wildfire smoke. Although wildfire

smoke has a different chemical composition than industrial pollution or vehicle exhaust, the large

labor market costs of wildfire-emitted pollutants—which comprise a significant share of all U.S.
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particulate matter emissions—suggest that other pollutants that negatively affect health may have

similarly large labor market costs.

Our results provide the first quasi-experimental evidence of the effect of air pollution events on

labor markets at a national scale. These results have broad implications for environmental policy.

Many agencies that engage in environmental policymaking, such as the Organisation for Economic

Co-operation and Development, the World Bank, and the U.S. EPA, have traditionally treated

pollution damages arising from lost labor market hours and earnings as considerably smaller than

the mortality cost of air pollution. Our findings indicate that environmental policies that ignore or

downplay the labor market effects of air pollution fail to take into account significant costs, and that

such policies may thus be inefficient. Our results also suggest that employment-reducing effects

of environmental regulation to improve air quality could be partially offset by gains in workers’

earnings and employment, in addition to the reduced health costs that are more broadly part of the

wider policy calculus.

Our findings also have direct implications for wildfire policy and management. A primary

implication of our results is that wildfire smoke creates large externalities. Decisions about land use

and fire management in one location can affect those living in distant regions. These widespread

effects call for greater coordination of fire policies, including a focus on preventing the start and

spread of wildfires. Policies should consider factors that go beyond traditional goals of defending

land and property exposed to fires in a given region to incorporate issues such as the amount of

smoke produced by the fire and whether the smoke plumes may reach areas with large populations.

The use of prescribed fires to remove fuel and limit the scope for larger future burns should likely

expand, although such fires should be set only after taking into account wind patterns to avoid

population exposure to the extent possible. Finally, estimates of the marginal cost of wildfire

suppression and prevention, which we hope will receive more attention in future research, should

consider the costs of both reducing the acreage burned and reducing the population exposed to

smoke. While wildfires and smoke cannot and should not be completely eliminated, policies could

better mitigate damages from these events by assessing the full scope of their effects.
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Figure 1: Annual Number of Smoke Days

Notes: This figure plots the number of days of smoke exposure in each county in the continental United States over the 2007-2019 sample period. Average
population-weighted exposure during this period was 20.2 days per year.
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Figure 2: Wildfire Smoke and Ground-Level PM2.5: Daily Event Study
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Notes: This figure shows coefficients from a regression of daily PM2.5 on indicators of daily smoke exposure up to 20
days before and after the day of observation. In addition to the 41 smoke indicators, the regression controls for
county-by-day-of-year fixed effects and state-by-year fixed effects. Standard errors are clustered at both the county
and the date levels.
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Figure 3: Labor Market Effects of Wildfire Smoke: Static vs. Dynamic Estimates
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Notes: We augment the baseline regressions of Table 1, Panel A with two lead and two lag terms of smoke exposure. The baseline estimates (labeled “static”) are
superimposed for comparison. All regressions are weighted by county population (panels A, B, and D) and population over age 16 (panel C), and include
county-by-quarter-of-year fixed effects and state×year fixed effects. Standard errors are two-way clustered at the county and state-by-quarter levels.
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Figure 4: Labor Market Effects of Wildfire Smoke: Linear vs. Nonlinear Estimates
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Notes: We residualize outcome variables and smoke exposure by county-by-quarter-of-year fixed effects and state-by-year fixed effects, and then plot a decile
binscatter of residualized outcome by residualized smoke. Regressions are weighted by county population (panels A, B, and D) and population over age 16 (panel
C). Slopes of the superimposed linear fit lines represent OLS regression coefficients as reported in Panel A of Table 1.
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Figure 5: IV Estimation by Subgroups
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Notes: Point estimates and range plots show the estimates in levels; bars convert the level estimates to percentage
terms by dividing the estimates by the average per capita earnings of the corresponding group. Regressions in Panel
A are each weighted by county population in the corresponding age groups. Average quarterly earnings for each age
group are as follows: $7,178 (ages 25–34), $10,203 (ages 35–44), $10,796 (ages 45–54), $8,342 (ages 55–64), and
$1,671 (ages 65 and above). Regressions in Panel B are weighted by county total population. In Panel B, solid points
highlight industries with a family-wise adjusted p-value of less than 0.05 based on 100 bootstraps of the free
step-down procedure of Westfall and Young (1993). All regressions include county-by-quarter-of-year fixed effects
and state-by-year fixed effects. Standard errors are two-way clustered at the county and state-by-quarter levels.
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Table 1: Wildfire Smoke, Pollution, and Labor-market Outcomes

(1) (2) (3) (4)

PM2.5 earnings employment LFP

A. First-stage and reduced-form estimates

Smoke 0.056*** -5.217*** -79.6*** -38.7***
(0.007) (0.776) (21.9) (9.2)

Outcome mean 9.46 5,359.7 625,776 625,434
Observations 75,207 160,346 160,346 161,498

B. OLS estimates

PM2.5 – -10.566*** -261.0** -95.7*
– (3.089) (113.9) (54.7)

Outcome mean – 5,687.6 643,597 631,806
Observations – 74,725 74,725 75,193

C. IV estimates

ˆPM2.5 – -103.1*** -1750.1*** -790.9***
– (20.4) (434.8) (182.1)

Kleibergen-Paap F – 71.8 71.2 71.7
Outcome mean – 5,687.6 643,597 631,806
Observations – 74,725 74,725 75,193

Notes: An observation is a county-quarter. The smoke variable (the focal dependent variable in Panel A) counts the number of days a
county is fully covered by a wildfire-smoke plume in a quarter. In Panel C, the smoke variable is used as an instrument for a county’s
quarterly average PM2.5. In all panels, the outcome mean reports the mean of the dependent variable before first differencing. All
regressions are weighted by county population (columns 1, 2, and 4) and population over age 16 (column 3), and include
county-by-quarter-of-year fixed effects and state-by-year fixed effects. Standard errors are two-way clustered at the county and
state-by-quarter levels. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table 2: Wildfire Smoke and Earnings: Heterogeneity by County Characteristics

(1) (2) (3) (4) (5) (6)

Smoke -5.976*** -5.366*** -5.749*** -4.095*** -6.524*** -6.794***
(0.670) (0.987) (0.770) (1.049) (1.181) (1.616)

Smoke × 1≥median(urban) 0.860 - - - - 1.244*
(0.631) - - - - (0.688)

Smoke × 1≥median(poverty) - 0.343 - - - 0.478
- (0.886) - - - (0.953)

Smoke × 1≥median(home price) - - 0.658 - - 0.384
- - (0.697) - - (0.763)

Smoke × 1≥median(black) - - - -2.414** - -2.817**
- - - (0.980) - (1.100)

Smoke × 1≥median(avg. PM2.5) - - - - 1.778 1.628
- - - - (1.180) (1.121)

Outcome mean 5,359.7 5,359.7 5,359.7 5,359.7 5,587.1 5,587.1
Observations 160,346 160,346 160,346 160,346 89,020 89,020

Notes: Each column is a separate regression. Indicator variables flag counties with above median: fraction of urban population (Census
2010), fraction of population living under 100% of the Federal Poverty Line (ACS 2007-2016), county median home value (ACS
2007-2016), share of African American population (ACS 2007-2016), and sample-average PM_2.5. All regressions are weighted by
county population, and include county-by-quarter-of-year fixed effects and state-by-year fixed effects. Standard errors are two-way
clustered at the county and state-by-quarter levels. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Online Appendix

Air Pollution and the Labor Market: Evidence from Wildfire Smoke

Mark Borschulte, David Molitor, & Eric Yongchen Zou

Appendix A: Mortality Effects Estimation

In Section 5.2, we calculate mortality costs of air pollution using established estimates from
Deryugina et al. (2019). Here we consider a complementary approach to benchmark the costs
of lost earnings to those of premature deaths by directly estimating the effect of smoke (and the
resulting pollution increases) on mortality. A conceptual appeal of this approach is that we rely on
the same source of variation in deriving the mortality damages as we did in deriving the earnings
losses, facilitating a direct comparison of labor market and mortality costs of pollution.

We measure mortality outcomes using micro-data provided by the National Vital Statistics
System. The underlying data are taken from death certificates which contain age of death. We use
the restricted data files containing month of death and covering all counties in the United States to
measuring monthly mortality at the county level. The data are available from 2007 to 2015.

We begin by estimating the mortality effect of smoke exposure at the monthly level, the tempo-
ral level of our mortality data, using a regression specification that mirrors that from our earnings
analysis. The outcome, Mortalitycm, is measured as deaths per million in county c and month m.
We regress this outcome on the number of days SmokeDaycm in which the county was exposed to
wildfire smoke that month:

Mortalitycm = β ·SmokeDaycm +αc×month-of-year +αstate×year + εcm. (A–1)

The primary coefficient of interest is β, which describes the effect of an additional day of smoke
on mortality in the month of exposure. Analogous to equation (4) we include county-by-month-of-
year fixed effects and state-by-year fixed effects to control for county-specific seasonality as well
as common shocks at the state-year level. Standard errors are two-way clustered at the county and
state by month levels. Like in the labor market analysis, we also report OLS regressions in which
we use monthly average PM2.5 concentration as the key independent variable in equation (A–1).
We further implement IV models instrumenting for monthly PM2.5 using SmokeDaycm.

Panel A of Appendix Table A.6 reports the estimates for all age groups (column (1)), the non-
elderly group (column (2)), and the elderly population (column (3)). The mortality estimates allow
us to compare the costs of mortality to social welfare losses of a 1 unit increase in PM2.5, now
using IV estimates that come directly out of the smoke quasi-experiment. Column (3), Panel A
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shows that each day of smoke in a month increases the elderly mortality rate by 0.972 deaths per
million people. This estimate has a standard error of 0.522 and is marginally significant at the 10
percent level. The corresponding IV estimate is noisily estimated, and suggests a unit increase in
monthly PM2.5 increases elderly mortality by 4.45 deaths per million (SE=3.34, p-value=0.183),
or an annual effect of 53.4 additional deaths per million people. The magnitude of our monthly
PM2.5-mortality IV estimate is comparable to the three-day mortality effects reported in Deryugina
et al. (2019) who also study the elderly population during a similar period. The implied monthly
effect of a 1 µg/m3 PM2.5 on elderly mortality is (0.69÷3)×30 = 6.9 deaths per million. Using the
two VSL approaches mentioned in Section 5.2, we conclude that the annual mortality cost among
the elderly is $5.2 billion to $19.9 billion. If we instead use the all-age IV estimate of 0.379 deaths
per million people for the calculation (Table A.6, Panel A, column (1)), the implied mortality cost
based on the EPA’s VSL estimate of $9.25 million per life lost is $13 billion annually.

In Panel B of Appendix Table A.6, we repeat reduced-form, OLS, and IV models but aggregat-
ing data at the monthly level to the quarterly level, the temporal level of our labor market analysis.
Unfortunately, standard errors in the quarterly estimates are too large to draw conclusions. These
noisy results may partially reflect well-known challenges of estimating the effect of transient pol-
lution changes on longer-run mortality outcome due to issues such as harvesting and behavioral
responses. Most of the existing literature we are aware of focuses on either the pollution’s effect
in the short run (e.g., Knittel, Miller and Sanders, 2016; Schlenker and Walker, 2016; Deryugina
et al., 2019), or on the longer-run mortality effects of sustained pollution exposure (e.g., Deschênes,
Greenstone and Shapiro, 2017; Anderson, 2020; Ebenstein, Lavy and Roth, 2016).
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Appendix Figures and Tables

Figure A.1: Fire and Smoke on May 7, 2016

Notes: This map depicts smoke patterns on May 7, 2016, at 9:20 a.m. The Fort McMurray fires in Northern Canada
can be seen north of Alberta. This large wildfire produces a smoke plume that reaches the upper Midwest of the
United States. Wildfires in the U.S. Southeast produce plumes reaching Canada. Source: WeatherUnderground.com
via WildfireToday.com.
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Figure A.2: Wildfire Smoke and Ground-level PM2.5: Robustness to Flexible Wind Controls
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Notes: This figure shows coefficients from a regression of daily PM2.5 on indicators of daily smoke exposure up to 20
days before and after the day of observation. Three specifications show varying degrees of controls of wind direction:
no controls, 60-degree angle bins of daily wind direction, 60-degree angle bins of daily wind direction fully
interacted with state dummies, and 60-degree angle bins of daily wind direction fully interacted with county
dummies. The regression incorporates 41 smoke indicators and controls for county-by-day-of-year fixed effects and
state-by-year fixed effects.
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Figure A.3: Wildfire Smoke Shock to Ground-level Pollution
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Notes: Each panel shows coefficients from a regression of daily standardized (mean of zero, standard deviation of one) pollutant concentration on indicators of
daily smoke exposure up to 20 days before and after the day of observation. The regression incorporates 41 smoke indicators and controls for
county-by-day-of-year fixed effects and state-by-year fixed effects.
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Table A.1: Robustness Checks: Reduced-Form Regressions

(1) (2) (3) (4)

PM2.5 earnings employment lfp

A. Smoke measurement

∑ %county smoked 0.053*** -4.102*** -75.0*** -25.3***
(0.006) (0.779) (20.0) (9.6)

B. Weather controls

Temp. Ppt. Wdir. Wspd. 0.043*** -4.950*** -76.3*** -32.8***
(0.006) (0.791) (18.9) (9.6)

Wdir. × state 0.048*** -5.019*** -59.6*** -32.0***
(0.006) (0.793) (19.0) (9.3)

Wdir. × county 0.048*** -5.312*** -63.1*** -32.0***
(0.007) (0.864) (20.3) (9.9)

C. Fixed effects controls

state-by-year FEs (baseline) 0.056*** -5.217*** -79.6*** -38.7***
(0.007) (0.776) (21.9) (9.2)

division-by-year FEs 0.053*** -5.399*** -100.7*** -27.9
(0.007) (0.759) (26.2) (17.5)

region-by-year FEs 0.054*** -5.212*** -109.2*** -26.0
(0.007) (0.773) (29.6) (20.5)

year FEs 0.057*** -4.421*** -132.9*** 13.5
(0.008) (0.797) (33.2) (22.3)

D. Annual data

state-by-year FEs 0.036*** 1.083 -3.5 -30.2
(0.005) (4.252) (37.1) (25.0)

division-by-year FEs 0.016*** -5.902*** -80.0*** 15.8
(0.004) (2.075) (26.1) (16.9)

region-by-year FEs 0.017*** -4.139*** -79.1*** 11.2
(0.003) (1.454) (21.8) (13.7)

year FEs 0.019*** 0.045 -82.8*** 51.2***
(0.003) (1.377) (18.3) (10.4)

E. Outcome specification

Lvl spec. w/ trends 0.060*** -2.454*** -42.7*** -24.7***
(0.006) (0.596) (11.1) (7.4)

Lvl spec. wo/ trends 0.056*** -1.581 10.8 -25.3***
(0.007) (0.965) (8.6) (2.1)

First-diff spec 0.063*** -3.663*** -51.6*** -26.9***
(0.006) (0.654) (16.1) (9.0)

F. Standard errors clustering

0.056 -5.217 -79.6 -38.7
County + division-by-quarter (0.009)*** (1.062)*** (37.7)** (13.1)***
County + region-by-quarter (0.011)*** (1.432)*** (51.9) (16.4)**
County + quarter (0.011)*** (2.077)** (81.6) (26.6)
County (0.004)*** (0.470)*** (10.0)*** (5.7)***
State (0.013)*** (0.949)*** (23.0)** (9.5)***

Notes: Each cell is a separate regression. Row names indicate the type of robustness checks performed. All regressions are weighted by
county population (columns 1, 2, and 4) and population aged over 16 (column 3), and include county-by-quarter-of-year fixed effects
and state-by-year fixed effects. Unless otherwise noted, standard errors are two-way clustered at the county and state-by-quarter levels.
*: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.2: Robustness Checks: IV Regressions

(1) (2) (3)

earnings employment lfp

A. Smoke measurement

∑ %county smoked F=89.9 -83.409*** -1738.9*** -506.3**
(19.517) (394.1) (205.1)

B. Weather controls

Temp. Ppt. Wdir. Wspd. F=45.9 -124.074*** -2065.7*** -814.8***
(28.967) (544.2) (231.5)

Wdirx × state F=56.0 -113.794*** -1643.9*** -758.3***
(25.824) (453.2) (199.7)

Wdirx × county F=50.0 -123.416*** -1768.0*** -778.0***
(29.247) (513.3) (226.9)

B. Fixed effects controls

state-by-year FEs (baseline) F=71.8 -103.1*** -1750.1*** -790.9***
(20.4) (434.8) (182.1)

division-by-year FEs F=62.5 -110.3*** -2183.7*** -637.7*
(21.8) (561.8) (348.9)

region-by-year FEs F=61.7 -105.040*** -2191.8*** -715.3*
(20.492) (596.1) (400.9)

year FEs F=47.8 -85.368*** -2607.6*** -25.7
(19.977) (710.0) (418.9)

C. Annual data

state-by-year FEs F=50.2 41.562 -99.6 -658.9
(144.336) (1172.0) (753.6)

division-by-year FEs F=20.1 -357.457* -4851.0** 1048.7
(185.348) (2350.1) (1233.9)

region-by-year FEs F=25.7 -219.809* -3929.2** -171.9
(115.260) (1849.6) (935.4)

year FEs F=42.1 14.799 -4585.5*** 2093.1***
(89.288) (1479.2) (769.0)

D. Outcome specification

Lvl spec. w/ trends F=115.8 -43.572*** -848.0*** -492.6***
(12.989) (201.0) (157.3)

Lvl spec. wo/ trends F=71.9 -27.721 206.9*** -451.9***
(22.200) (68.8) (73.1)

First-diff spec. F=97.9 -65.9*** -1069.6*** -462.8***
(14.8) (291.5) (153.3)

E. Standard errors clustering

-103.077 -1750.1 -790.9
County + division-by-quarter F=35.9 (27.610)*** (761.5)** (262.9)***
County + region-by-quarter F=26.3 (34.802)*** (1012.3)* (333.9)**
County + quarter F=25.0 (43.372)** (1579.7) (511.1)
County F=190.5 (13.611)*** (233.4)*** (123.9)***
State F=18.2 (39.845)** (503.0)*** (285.1)***

Notes: Each cell is a separate 2SLS regression. Row names indicate the type of robustness checks performed. All regressions are
weighted by county population (columns 1, 2, and 4) and population aged over 16 (column 3), and include county-by-quarter-of-year
fixed effects and state-by-year fixed effects. Unless otherwise noted, standard errors are two-way clustered at the county and
state-by-quarter levels. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.3: Air Pollution and Earnings: OLS Regressions with Multiple Pollutants

(1) (2) (3) (4) (5) (6)

PM2.5 -10.6*** -13.6*** -11.1*** -14.1*** -10.0** -15.4***
(3.1) (3.5) (3.4) (4.4) (4.0) (5.1)

PM10 - 1.9* - - - 2.6*
- (1.1) - - - (1.4)

O3 - - -1.2 - - -2.5
- - (1.1) - - (1.7)

SO2 - - - -3.6 - -7.6*
- - - (2.3) - (4.5)

NO2 - - - - -5.5 -4.2
- - - - (3.9) (3.6)

Outcome mean 5,687.6 5,975.2 5,763.9 6,114.5 6,211.8 6,390.4
Observations 74,725 42,616 64,248 40,363 31,534 23,373

Notes: Each column is a separate regression. Pollutants are measured in µg/m3 (PM2.5 and PM10), ppb (O3), and ppm (SO2 and NO2).
All regressions are weighted by county population, and include county-by-quarter-of-year fixed effects and state-by-year fixed effects.
Standard errors are two-way clustered at the county and state-by-quarter levels. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.4: Population Flow Responses

(1) (2) (3)

in-migration out-migration tax-exemptions
(log) (log) (log)

Smoke -0.003 0.0001 -0.010
(0.015) (0.012) (0.007)

Observations 37,254 37,256 37,284

Notes: The table reports estimated effects of an additional day of wildfire smoke exposure on annual IRS SOI migration outcomes.
Each column corresponds to a separate regression using county-year observations and relevant county population weights. The focal
independent variables capture the number of days in a year on which a county was exposed to wildfire smoke. All regressions include
county fixed effects, and state-by-year fixed effects. Standard errors are clustered at both the county and the state-by-year levels.
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Table A.5: Sub-industry IV Estimates for the Agricultural Sector

(1) (2) (3) (4) (5) (6)

NAICS code: 11 111 112 113 114 115

crop animal forestry fishing support
ag total production production logging hunting activities

ˆPM2.5 -54.2* -44.2*** 0.7 1.6 -0.7 -26.9
(29.1) (15.3) (1.6) (1.9) (1.6) (23.7)

Outcome mean 5,147.3 2,464.0 735.8 437.5 99.0 2,462.8
Kleibergen-Paap F 186.2 160.0 134.3 138.5 15.1 140.5
Observations 68,846 50,816 43,921 19,841 3,582 38,634

Notes: Each cell is a separate regression following the IV estimation equations (5) and (6). The dependent variable is QWI employment
for the corresponding sector indicated by the column title. The smoke variable is used as an instrument for county’s quarterly average
PM2.5. All regressions are weighted by county population aged over 16 and include county-by-quarter-of-year fixed effects and
state-by-year fixed effects. Standard errors are two-way clustered at the county and state-by-quarter levels. *: p < 0.10; **: p < 0.05;
***: p < 0.01.
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Table A.6: Wildfire Smoke and Mortality

(1) (2) (3)

all ages ages 60- ages 60+

A. Monthly mortality

Smoke (reduced form) 0.132 0.081* 0.972*
(0.110) (0.043) (0.522)

PM2.5 (OLS) 0.480*** 0.148** 1.273
(0.167) (0.061) (0.820)

ˆPM2.5 (IV) 0.379 0.270 4.446
(0.648) (0.259) (3.335)

[F=103.5] [F=104.2] [F=97.9]

B. Quarterly mortality

Smoke (reduced form) -0.118 0.045 1.162
(0.186) (0.049) (0.934)

PM2.5 (OLS) 0.628 0.247 -2.131
(1.032) (0.310) (4.997)

ˆPM2.5 (IV) -5.908 1.468 -8.889
(5.415) (1.480) (28.206)

[F=42.6] [F=43.3] [F=39.1]

Mean monthly mortality 678.762 168.445 2845.111
Mean quarterly mortality 2033.419 506.850 8600.272
Observations (monthly) 330,442 330,442 330,442
Observations (quarterly) 123,422 123,422 123,422

Notes: Each cell represents a separate regression. Outcome variables are all-age mortality (column 1), mortality among age below 60
(column 2), and mortality among age above 60 (column 3). “Smoke” counts the number of days a county is fully covered by wildfire
smoke plumes. In IV estimation, the smoke variable is used as an instrument for county’s quarterly average PM2.5. All regressions are
weighted by county population in the relevant age groups, and include county×month-of-year fixed effects and census state×year fixed
effects. Standard errors are two-way clustered at the county and state-by-month levels (panel A) and county and state-by-quarter levels
(panel B). *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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