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Appendices

A Appendix: Robustness to continuation mechanism

In the main text of the paper, we interpret our baseline results by arguing that knowledge spillovers

from proximity to lead investigators increased new drug utilization in author HRRs. A competing

explanation that we discuss in the robustness section of the main paper is that heightened levels of

utilization among patients in author HRRs might simply reflect the continuation of treatment for

patients enrolled in the trial itself.

In the paper, we discuss results that restrict to new episodes of cancer treatment in an effort to

exclude continuing patients from the sample. There are also several other reasons why it is unlikely

that the continuation mechanism drives the results we observe. First, while the largest trial sites

tend to be located in an author HRR, they are not systematically located in the lead author’s

HRR.1 Second, even for a large site with many patients enrolled, it is likely that few of the patients

assigned to receive the study drug would show up in our Medicare analysis sample.

To give a back of the envelope sense of the magnitudes that could be explained by continuation

effects, we approximate the number of potentially continuing patients in our sample, using infor-

mation from FDA medical reviews. As a plausible upper bound, we allow the lead author trial sites

to enroll 33 patients on average, the average size of the largest site in our analysis of FDA disclo-

sures.2 Of these 33 patients, assume 16.5 patients are randomized to the treatment arm receiving

1We examined FDA medical reviews and clinical trial publications for each of the 21 drugs in our sample to
determine, when possible, the total number of patients enrolled in the pivotal clinical trial, the number of trial
centers enrolling patients in the trial, the number of patients enrolled in author regions, and the age distribution
and median survival of patients in the trial. On average, the pivotal trials for the drugs in our sample enrolled 299
patients across 56 trial sites. While neither the FDA medical reviews nor clinical trial publications systematically
report on enrollment by site, select information about trial sites with high enrollment was available for 12 (57%) of
the drugs in our study. The average trial size for these twelve drugs was 300 patients, nearly identical to the average
trial size of 297 patients for the remaining nine drugs. For the 11 drugs for which we could determine the author
location of the largest trial site in the study, 8 (73%) were not located in the lead author’s HRR.

2Except where otherwise stated, the parameters for this calculation derive from the FDA medical reviews described
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the study drug, 8.25 (50%) of these patients survive until after FDA approval, and 2.9 (36%) of

the survivors are eligible for Medicare. Even if all 2.9 of these patients continued with the new

drug following FDA approval and were counted in our analysis, this would only account for 0.7%

of the average base population of 388 indicated cancer patients per drug in the lead author region

(Table 2, Column 1, Row 4), only a small fraction of the 4 percentage point increase in new drug

utilization we observe in lead author HRRs in the first two years following FDA approval. This

calculation further suggests that the continuation mechanism is not likely to explain a significant

share of the increase in utilization we estimate in lead author regions.

in the previous footnote. Across the 12 drugs for which site enrollment information was available, the trial site enrolling
the most patients enrolled 33 patients, on average. The average age of enrolled patients was approximately 58 years;
only 6 of the trials reported the fraction of elderly patients, and in all cases fewer than 36% of patients were 65
years or older. We therefore take 36% as our estimated fraction of trial patients eligible for Medicare. For the 13
drugs reporting median survival in the trial publication, median overall survival in the most favorable treatment arm
reported was 14.3 months. This suggests that fewer than half (50%) of individuals enrolled in the pivotal study would
have survived to the years following FDA approval of the drug, the baseline years of our analysis.
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B Additional Tables and Figures

Table A1: List of Studied Cancer Drugs, Extended Characteristics

(1) (2) (3) (4) (5)
Xeloda Capecitabine 4/30/1998 Journal of Clinical Oncology 26,410
Herceptin Trastuzumab 9/25/1998 Journal of Clinical Oncology 26,410
Valstar Valrubicin 9/25/1998 Journal of Urology 13,557
Ontak Denileukin diftitox 2/5/1999 Journal of Clinical Oncology 819
Temodar Temozolomide 8/11/1999 British Journal of Cancer 1,797
Ellence Epirubicin hydrochloride 9/15/1999 Journal of Clinical Oncology 53,762
Mylotarg Gemtuzumab ozogamicin 5/17/2000 Journal of Clinical Oncology 2,192
Trisenox Arsenic trioxide 9/25/2000 Journal of Clinical Oncology 1,079
Campath Alemtuzumab 5/7/2001 Blood 12,027
Zometa Zoledronic acid 8/20/2001 Journal of Clinical Oncology 2,694
Zevalin1 Ibritumomab tiuxetan 2/19/2002 Journal of Clinical Oncology 51,042
Faslodex Fulvestrant 4/25/2002 Journal of Clinical Oncology 64,045
Eloxatin Oxaliplatin 8/9/2002 Journal of Clinical Oncology 52,778
Velcade2 Bortezomib 5/13/2003 New England Journal of Medicine 23,819
Bexxar Tositumomab-I 131 6/27/2003 Journal of Clinical Oncology 54,275
Alimta Pemetrexed 2/4/2004 Journal of Clinical Oncology 84,918
Erbitux Cetuximab 2/12/2004 New England Journal of Medicine 55,528
Avastin Bevacizumab 2/26/2004 New England Journal of Medicine 55,528
Dacogen Decitabine 5/2/2006 Cancer 15,460
Arranon Panitumumab 9/27/2006 Journal of Clinical Oncology 59,028
Torisel Temsirolimus 5/30/2007 New England Journal of Medicine 3,794

Generic nameTrade name
FDA approval 

date

Size of 
target 

population
Journal of publication

Notes: This table extends Table 1 from the main text, providing additional characteristics on sample drugs.
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Table A2: Author Proximity Effect on Drug Utilization: Finer divisions of author role

Dependent'variable:'(drug)_id'in'{0,1},'indicates'receipt'of'new'cancer'drug'd'by'patient'i

(1) (2) (3) (4) (5) (6)
First.author.HRR 0.0406*** 0.0385*** 0.0403***

(0.0131) (0.0122) (0.0154)
Middle.author.HRR 0.0077 0.0074 0.0076

(0.0050) (0.0054) (0.0055)
Last.author.HRR 0.0006 0.0028 +0.0064

(0.0140) (0.0127) (0.0175)
First.author.physician.group 0.0422*** 0.0407*** 0.0422***

(0.0125) (0.0126) (0.0162)
First.author.HRR,.nonCauthor.group 0.0417** 0.0395** 0.0411**

(0.0211) (0.0196) (0.0203)
Middle.author.physician.group 0.0273*** 0.0273*** 0.0259**

(0.0074) (0.0074) (0.0082)
Middle.author.HRR,..nonCauthor.group +0.0018 +0.0023 +0.0007

(0.0059) (0.0064) (0.0060)
Last.author.physician.group 0.0324 0.0314 0.0438

(0.0324) (0.0319) (0.0329)
Last.author.HRR,..nonCauthor.group +0.0137 +0.0101 +0.0275***

(0.0016) (0.0097) (0.0087)

Number.of.observations 659,468 659,468 281,253 281,253 393,618 393,618

(1C2)..All.HRRs.and.patient.episodes.within.1C2.calendar.years.after.drug's.FDA.approval
(3C4)..Sample.limited.to.HRRs.which.ever.contain.any.pivotal.trial.author
(5C6)..All.HRRs,.but.limited.to.new.cancer.patients,.defined.as.patients.with.no.cancer.treatment.in.previous.calendar.year

Appendix.Table.1:.Author.Proximity.Effect.on.Drug.Utilization

Panel.A:..All.HRRs Panel.B:..Author.HRRs.only Panel.C:..New.Cancer.Patients

Notes:.Each.observation.is.a.patientCepisode,.i.e..a.1.year.episode.of.care.during.which.the.patient.has.the.indicated.cancer.type.and.so.may.be.
eligible.for.treatment.with.the.new.drug..First.author.HRR.(hospital.referral.region).is.an.indicator.variable.that.equals.1.if.the.patient.is.treated.in.
the.same.region.as.the.trial's.first.author..Other.author.HRR.indicates.treatment.in.the.same.region.as.another.trial.author.(besides.the.first.author)..
Author.physician.group.indicators.equal.1.if.the.patient.was.at.any.point.treated.by.a.physician.practicing.in.the.same.group.as.the.trial.author..HRR,.
nonCauthor.group.indicators.equal.1.if.the.patient.is.treated.in.the.author's.HRR.but.never.by.a.doctor.practicing.in.the.same.group.as.a.trial.author..
All.regressions.include.drugCyear.fixed.effects,.and.HRRCcancer.fixed.effects.defined.using.three.categories.of.cancer.drugs:.urologic,.hematologic,.
and.other.(including.breast,.colon,.lung,.and.brain)...Standard.errors.clustered.at.the.HRRCdrug.level.shown.in.parentheses..***:.p<0.10;.**:.p<0.05;.
***:.p<0.01.

Notes: See notes to Table 3. In contrast to results reported in Table 3, we split the “other” author category to
separately consider middle and last authors.

Notes on Appendix Table A2

This table reports results from 6 separate regressions that mirror our baseline specification 1, but

further subdivide other authors into middle authors and last authors on the basis of authorship

order on the academic publication. For new drug clinical trials, the first author is typically the

principal investigator and the last author is often a scientist employed by the sponsoring drug

company. In fact, only seven drugs in our sample have a last author who is a practicing clinician,

whereas all 18 drugs with US-based trials have a practicing clinician as the first author. Note that

we only investigate the role of practicing physicians; for the many drugs with a non-clinical final

author, there is no last author region coded.

Results reported here find that patients treated in last author regions are not significantly more

likely to receive the new drugs compared to other regions; however, the estimates are relatively

imprecise due to the small number of drugs with clinicians in the last author position. In particular,

the 95% confidence interval includes an up to 2.8 percentage point higher utilization in last author

regions, reported from the column (1) baseline specification. Point estimates are suggestive of 3.2

percentage point higher use within the last author’s physician group, as reported in column (2),

but the findings are not statistically significant.
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Table A3: P-values from Alternate Approaches to Inference

Proximity Measures
(1) (2) (3) (4) (5) (6) (7) (8)

First author HRR 0.0404*** 0.0404*** 0.0404*** 0.0404**
(0.002) (0.010) (0.010) (0.012)

Other author HRR 0.0069 0.0069 0.0069 0.0069
(0.149) (0.155) (0.212) (0.180)

First author HRR & in author group 0.0421*** 0.0421*** 0.0421*** 0.0421***
(0.001) (0.000) (0.002) (0.002)

First author HRR & non-author group 0.0416** 0.0416* 0.0416 0.0416
(0.048) (0.076) (0.168) (0.278)

Other author HRR & in author group 0.0276*** 0.0276*** 0.0276*** 0.0276***
(0.000) (0.002) (0.002) (0.002)

Other author HRR & non-author group -0.0031 -0.0031 -0.0031 -0.0031
(0.564) (0.549) (0.652) (0.626)

Number of observations 659,468 659,468 659,468 659,468 659,468 659,468 659,468 659,468

Panel D: Wild cluster 
bootstrap at HRR

Panel C:  Wild cluster 
bootstrap at HRR-drug

Panel B: Standard   
cluster at HRR

Dependent variable: (drug)_id in {0,1}, indicates receipt of new cancer drug d by patient i

Panel A: Standard 
cluster at HRR-drug

Notes: This table explores robustness of our main findings to alternative methods of statistical inference to account for
clustering. In columns 1 and 2, we replicate the analysis from Table 3 Panel A, but we now report p-values associated
with each coefficient in parentheses. Each subsequent panel reports the same regression results, but applies a different
methodology for inference. Panel A uses the usual cluster robust standard error with clusters defined at the hospital
referral region (HRR) by drug level. Panel B reports p-values using the usual cluster robust standard error with
clusters defined at the HRR. Panel C reports p-values from a wild cluster bootstrap, accounting for clusters at the
HRR by drug level. Panel D reports p-values from a wild cluster bootstrap, accounting for clusters at the HRR level.
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Table A4: Scope of Author Influence

Independent�variables: (1) (2) (3) (4) (5) (6)
First�author�HRR 0.0409*** 0.0385*** 0.0402*** 0.0402*** 0.0006 0.0007

(0.0112) (0.0105) (0.0131) (0.0130) (0.0005) (0.0005)
First�author�HRR�*�Fast�adoption�index Ͳ0.0215** Ͳ0.0197***

(0.0084) (0.0077)
Neighbor�of�first�author�HRR 0.0017 0.0014

(0.0066) (0.0066)

Other�author�HRR 0.0064 0.0063 0.0066 0.0067 0.0002 0.0003
(0.0047) (0.0050) (0.0048) (0.0049) (0.0004) (0.0004)

Other�author�HRR�*�Fast�adoption�index Ͳ0.0042 Ͳ0.0035
(0.0052) (0.0053)

Neighbor�of�other�author�HRR Ͳ0.0031 Ͳ0.0030
(0.0030) (0.0031)

Sample
Restricted�sample? No Yes No Yes No Yes
Number�of�observations 659,468 286,637 659,468 547,256 7,712,248 3,063,237

Notes:�This�table�reports�coefficients�and�standard�errors�from�6�separate�regressions.�See�notes�to�Table�3�for�further�details.�
Columns�2�and�6�restrict�the�sample�to�only�include�regions�that�contain�at�least�one�study�author.�Column�4�restricts�the�sample�to�
include�only�regions�that�contain�a�study�author�or�border�an�author�region.��p<0.10;�**:�p<0.05;�***:�p<0.01.

(5Ͳ6)��Sample�is�changed�to�include�all�cancer�care�episodes�treating�patients�who�do�not�have�the�indicated�disease�type�for�the�
observed�drug�(e.g.�testing�use�of�a�colon�cancer�drug�in�patients�with�other�cancer�types,�such�as�breast�cancer�or�lung�cancer).

(3Ͳ4)��Neighbor�regions�are�defined�as�those�that�share�a�border�with�author�regions.

(1Ͳ2)�Fast�adoption�index�summarizes�regional�utilization�rates�of�new�drugs�when�there�is�no�author�present�in�the�region;�the�
variable�is�normed�to�be�mean�zero�and�have�a�standard�deviation�of�1.�Higher�values�correspond�to�regions�that�are�quicker�to�adopt�
new�cancer�drugs.

Table�5:�Scope�of�Proximity�Effects

Neighbor�region�drug�
adoption OffͲlabel�drug�use

Regional�technology�
intensity

Dependent�variable:�(drug)_id�in�{0,1},�indicates�receipt�of�new�cancer�drug�d�by�patient�i

Notes on Appendix Table A4

This table probes the extent of drug authors’ influence. In particular, we test which types of regions

are most heavily influenced by investigator proximity; whether study authors affect utilization in

neighboring regions; and lastly, whether study authors affect off-label drug use.

First, we test whether regions that are typically slow to adopt new cancer drugs experience a

greater boost in utilization when a study author is located in the region. There may be greater

scope for the study author to affect practice patterns in slower-adopting regions that are not already

very high users of new cancer drugs.

We develop a measure of each region’s speed of new cancer drug adoption by looking at the

average rates of new drug use when no author is present in the region. In particular, we regress

an indicator for new drug use on a series of region dummy variables, controlling for drug by year

fixed effects, patient demographic characteristics and whether this is a new cancer spell. To avoid
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including the direct impact of author proximity in this measure of regional adoption speed, we

exclude from the sample any observations where an author for the relevant drug was located in

that region. This regression includes only observations in the first two years following initial FDA

approval. The region fixed effects from this regression form the basis of our measure of regional

technology adoption speed.

For ease of interpretation, we standardize this measure of technology adoption speed by de-

meaning the variable and dividing each fixed effect by the standard deviation. As a result, the

average regional technology adoption speed index is 0, and a value of 1 corresponds to a region

with average new drug use 1 standard deviation above the national mean.

For estimation, we augment our baseline estimating Equation (1) to include interaction terms

between whether the first (or other) author is located in the region and the region’s technology

adoption speed index. Results are reported in Table A4, columns (1-2). We find that the first

author’s influence is greatest in regions that are typically slower to adopt new drugs; the interaction

term is negative and statistically significant at the 5% level. For regions near the mean of the

adoption speed index, patients are 4.1 percentage points more likely to receive treatment with the

new drug when the first author is located in that region. The impact of being treated in a first

author HRR increases to 6.2 percentage points for regions that are typically 1 standard deviation

slower to adopt than the average region; the effect falls to 1.9 percentage points for regions that

are typically 1 standard deviation faster to adopt.

We continue to find no significant effect of being treated in a middle or last author’s region.

The coefficient on the interaction between other author HRR and regional adoption speed index

similarly suggests that slower-adopting regions experience a greater effect of proximity to other

study authors; however, the result is not statistically significant.

The first author’s influence boosts regional use more for regions that tend to be technology

adoption laggards. From a policy perspective, this suggests that investment in clinical research

may yield the greatest spillovers to medical practice in regions that are not already among the

fastest adopters of new technologies. It should be noted that this effect is estimated only using

variation in adoption speed within the set of regions that contain a first author for at least one

in-sample drug.

Next, we test the geographic extent of investigator influence. This analysis not only addresses

the geographic extent of the authors’ reach, but also impacts the interpretation of our baseline

estimates from specification 1. There, we estimated the wedge between investigator HRRs relative
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to non-investigator HRRs. If proximity effects extend more broadly than an investigator’s own

HRR, some of the comparison non-investigator regions are themselves influenced by the treatment,

resulting in estimated proximity effects that are too small.

To measure whether investigator influence extends beyond his own HRR, for each drug we

identify the “neighbor” HRRs that share a border with the HRR in which the drug’s first author is

located. We augment our baseline estimating Equation 1 to include two indicator variables: one for

patients treated in a region that neighbors a first author region, and a second for patients treated

in a region that neighbors a middle or last author region.

Table A4 shows in columns (3-4) that while first author HRRs have a 4.0 percentage point

increase in their propensity to use the new drug, there is no observed increase in drug use of neigh-

boring HRRs. The point estimate suggests a less than 0.2 percentage point increase in new drug

utilization in neighboring HRRs, which is small in magnitude and statistically not distinguishable

from zero. This null effect is quite precise, with a 95% confidence interval that excludes effect sizes

that are one third as large as the impact of being treated in the first author’s HRR. There is a

similarly small, insignificant effect estimated for neighbors of other author HRRs. Although the

first author’s influence may extend beyond physicians in his own practice group to other physicians

practicing in the same region, there is no evidence that his influence raises utilization in neighboring

regions.

Finally, we investigate whether study authors influence the use of new drugs for applications

not covered by the initial FDA approval label. While drug labels typically provide relatively narrow

indications for application, physicians have wide latitude in determining how they will prescribe

the drug.3 Across our 21 drugs, 22% of utilization within the first two years was for patients with

diseases not indicated on the FDA label, which we will call “far” off-label drug use. In columns

(5-6) of Table A4, we estimate whether the study authors’ influence increases the use of new drug

for other applications. The sample is restricted to patients who do not have the broad cancer

type covered by the initial FDA label, and the estimating equation mirrors the specification in

Equation 1.

We find no evidence of higher use of the drug for off-label patients in the authors’ regions,

3For example, capecitabine was initially approved in 1998 for the treatment of metastatic breast cancer that had
already proved resistant to both paclitaxel and an anthracycline-containing chemotherapy regimen. In the preceding
analysis, we analyzed the use of capecitabine across all breast cancer patients, since our data do not allow us to
capture the more specific clinical conditions defining the label indications. However, in the first two years after
capecitabine’s introduction, a full 39% of its use was on colon cancer patients; colon cancer and breast cancer may be
biologically similar, but robust clinical trial evidence was not yet available for the application to colon cancer. The
FDA eventually added colon cancer to the label in 2001–after the two-year period covered by our main analysis.
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suggesting the authors’ influence is largely local to the cancer type on the initial label. A limitation

of this analysis is that it is relatively unusual for any given off-label cancer patient to receive

treatment with a particular new drug; mean utilization is 0.37 percentage points in regions that

ever contain a study author. The point estimate from column (5) suggests that off-label utilization

increases by 0.06 percentage points when the first author is in the region; the 95% confidence

interval bounds the effect as no larger than 0.16 percentage points.

If increased use in the first author’s region was driven by a pure “advertising” or “salience”

effect boosting awareness or enthusiasm of the new drug, we might have expected greater spillovers

to off-label applications. On the other hand, the authors’ expertise may be local to the indications

studied in the clinical trial they led; they may not have a strong informational advantage when it

comes to applications of the drug beyond that population. Taken as a whole, the evidence in this

section suggests that first authors boost on-label drug use within their own region, especially when

they are located in a region of relative technology laggards, but that authors have little measurable

influence on use in neighboring regions or on applications of the drug to other populations.
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Figure A1: Mortality Effect of Regional Adoption Speed
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Notes: On the primary axis, this solid blue line plots difference-in-differences estimates from eight separate regressions
(described in Equation (1)) where the mortality outcome varies from 90-day to 720-day mortality. Each mortality
outcome is an indicator for whether a patient died within the specified period from the initial date of the cancer
treatment episode. The regression is estimated over new patient-drug episodes that fall within four years before and
after FDA approval of the drug. Bands indicate 95% confidence intervals constructed from standard errors clustered
at the HRR-drug level. Each difference-in-differences coefficient describes how the mortality rate changes following
new cancer drug introductions for indicated cancer patients residing in fast-diffusing regions, compared to mortality
rate changes in slow diffusing regions. Regional drug diffusion speed is measured by a leave-out index which is
defined as the fraction of cases among all other drugs in our sample for which new drug utilization was higher than
the national average over the first four years following FDA approval. This index is a continuous measure ranging
from 0 to 1. Thus the plotted coefficients describe the mortality impact of a new drug introduction in places which
are above-average early adopters of all other new cancer drugs in our sample (diffusion index = 1) relative to a region
which has below-average early utilization of all other sample drugs (index = 0). The secondary axis shows average
mortality rates among the regression sample.
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Figure A2: Event Study Mortality Effect of Regional Adoption Speed
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Notes: This graph plots the coefficients from the difference-in-differences 360-day mortality specification (see Equa-
tion (1) and notes to Figure A1), but with the binary “post” indicator replaced by a series of indicators for the number
of years relative to the drug’s initial FDA approval. The omitted event year is 0. Bands indicate 95% confidence
intervals constructed from standard errors clustered at the HRR-drug level. Each coefficient describes how changes
in mortality relative to year zero differs across regions with a high versus low propensity to adopt new drugs, where
this propensity is measured by a leave-out diffusion index defined as the fraction of cases among all other drugs in
our sample for which new drug utilization was higher than the national average over the first four years following
FDA approval. Thus estimates of zero in the negative event years prior to drug FDA approval are consistent with the
parallel trends assumption that mortality between high- and low-adoption regions would not have changed absent the
new drug. Negative mortality estimates in event years following FDA approval suggest larger mortality reductions in
fast-diffusion regions compared to slow-diffusion regions.

Notes on Appendix Figures A1 and A2

In this appendix, we discuss the mortality findings summarized in Section 5 of the main paper

at greater length. First, it is useful to note a few key features of the identification problem for

studying mortality effects. First, our analysis will rely on comparing survival patterns across fast-

and slow-diffusion regions. Differences in survival across these regions could be driven either by

differences in take-up of the new drug or by differing returns to drug use among infra-marginal

treated patients.

Second, to understand the marginal returns to the additional drug use driven by investigator

influence, we would ideally compare changes in survival rates across author and non-author regions,

echoing our identification strategy from the earlier analysis. The problem is that such comparisons

are underpowered for estimating mortality effects: we are relying on moderate variation in drug

use from a handful of regions to measure changes in a noisy outcome variable (i.e. mortality rates).
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Any effect on mortality would be smaller than the total change in drug utilization, and thus the

regression would likely have less statistical power than the main specifications.

Studying mortality rates rather than drug take-up confers one crucial benefit which contributes

to identification: we can observe mortality rates for each cancer diagnosis in each region both before

and after drug approval in order to construct difference-in-differences estimates of survival effects.

Controlling for pre-period differences in mortality allows us to remove regional variation in survival

that may be driven by patient health status and isolate survival gains that may be plausibly related

to drug introduction. By contrast, our earlier analysis could not exploit such an approach since a

new drug’s measurable use is zero for all regions in the years before FDA approval and is therefore

uninformative about the region’s enthusiasm for new technology. For our analysis of drug take-up,

we instead relied on regional adoption rates of other new drugs to construct counterfactual adoption

behavior.

In light of these considerations, we proceed with a difference-in-differences estimation strategy

that compares mortality rates before and after new drug introduction, and across regions with

high and low propensities to adopt new cancer drugs. This approach exploits wider variation in

regional drug use, while still controlling for any baseline differences in survival by region and cancer

diagnosis. Our primary regression specification takes the following form:

1(mortality)ijtd = β(HRR diffusion index)jd × 1(post FDA approval)jtd

+ {HRR× drug FEs}jd + {drug× year FEs}dt + εijtd. (1)

The mortality outcome 1(mortality) is an indicator for whether a patient died within a specified

period (e.g. 1-year) of the initial date of the cancer treatment episode. To avoid estimating this

relationship using multiple observations from surviving patients, we include only new cancer treat-

ment episodes (i.e. patients with no cancer claims in the previous calendar year). The regression

is estimated over patient-drug episodes that fall within four years before and after FDA approval

of the drug.

The key coefficient of interest is β which describes how the mortality rate changes after drug

introduction in regions that are likely to be fast adopters of the new drug, among patients treated

for the relevant cancer type. The variable (HRR diffusion index) codes a leave-out estimate of

the region’s enthusiasm for new cancer drugs, excluding the region’s utilization for the partic-

ular drug under analysis. To remove potential bias from changes to patient sorting after drug
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introduction, we match patients to regions based on their HRR of residence. The indicator vari-

able 1(post FDA approval) equals 1 in the years following initial FDA approval for drug j and 0

otherwise.

More specifically, (HRR diffusion index)jd codes for region j the fraction of cases among all

drugs in our sample excluding drug d for which new drug utilization in region j was higher than

the national average over the first four years following FDA approval. A value of 0 would indicate

the region is never an above-average adopter of any other new cancer drug in our sample over the

first four years; a value of 1 would indicate the region is an above-average adopter of all other new

cancer drugs in our sample. Because we use a leave-out estimate of diffusion speed, this measure

should be uncorrelated with the idiosyncratic latent demand for this particular cancer drug in each

region, which in turn could be related to differences in health status.

The regression also controls for region by drug (i.e. drug-specific diagnoses) fixed effects. These

fixed effects provide a fine level of control for baseline disease-specific regional mortality rates; they

are identified in this regression by the inclusion of pre-period years prior to drug introduction.

Finally, we control for drug by year fixed effects, which capture national trends in survival for each

drug-specific set of cancer diagnoses in our sample.

The identifying assumption for interpreting β as the causal impact of differences in drug uti-

lization on patient survival depends on the usual parallel trends assumption. In this case, the

assumption is that fast and slow diffusion HRRs would have experienced parallel changes in mor-

tality rates if no new drug had been introduced. To explore the validity of this assumption, we

show the event study plot reporting regression results that replace the binary 1(post FDA approval)

variable with a series of dummy variables for each year relative to FDA approval. An absence of

pre-trends in this plot would support the validity of the difference-in-differences results.

Our baseline results from estimating equation (1) are reported in Figure A1. Each point in

the figure represents the coefficient β estimated from a separate regression, where the outcome

variable is mortality over the indicated time window, ranging from 90 days to 720 days. Beginning

with the outcome of 240 day mortality rates, all regressions show statistically significant mortality

reductions in fast-adopting regions relative to slow-adopting regions, significant at the 5% level.

For example, the point estimate implies a 1 percentage point greater reduction in 1-year mortality

for the relevant cancer diagnosis for a region that is an above-average adopter of all other in-sample

drugs compared to a region that is a below-average adopter of all other drugs, from a base mortality

rate of 27.5%.
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To investigate the validity of the parallel trends assumption, we create an event study plot

showing the year-by-year differences in 1-year mortality rates across fast- and slow-adopting regions.

As Figure A2 shows, the differences in cancer mortality were stable across regions in the pre-period

years; after a new drug is introduced, the fast-adopting regions experience steep declines in patient

mortality, consistent with the basic difference-in-differences results. These findings corroborate the

assumption that fast- and slow-adopting regions were on similar trends in cancer mortality rates

before new drug introduction.

To further interpret the magnitude of these results, we examine how our leave-out estimate

of regional diffusion speed relates to average new drug utilization rates. To proceed, we use an

analogous specification as in (1) above, with pre-period utilization of a new drug before set to zero

prior to FDA approval. We find that new drug use is 3.0 percentage points (standard error of

0.36) higher in fast-diffusing regions in the first four years following FDA approval. This change

corresponds to a 37% increase in drug utilization over the average rate of 8.1% in the new cancer

patient sample. If we interpret the effect on drug utilization as the first stage of an instrumental

variables regression to calculate the local average treatment effect of new drug use, the Wald

instrumental variable estimate would suggest that new drug use is associated with a 33 percentage

point reduction in 1-year mortality, among the marginal treated patients in high-diffusing regions.
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