
THE LOCAL INFLUENCE OF PIONEER INVESTIGATORS ON TECHNOLOGY
ADOPTION: EVIDENCE FROM NEW CANCER DRUGS

Leila Agha and David Molitor*

Abstract—Local opinion leaders may play a key role in easing informa-
tion frictions associated with technology adoption. This paper analyzes the
influence of physician investigators who lead clinical trials for new cancer
drugs. By comparing diffusion patterns across 21 new cancer drugs, we
separate correlated regional demand for new technology from information
spillovers. Patients in the lead investigator’s region are initially 36% more
likely to receive the new drug, but utilization converges within four years.
We also find that superstar physician authors, measured by trial role or
citation history, have broader influence than less prominent authors.

I. Introduction

ACROSS many industries, technology adoption exhibits
spatial clustering (Comin, Dmitriev, & Rossi-Hansberg,

2012). In medicine, technology diffusion shows similar pat-
terns, with notable clustering within interpersonal networks
(Coleman, Katz, & Menzel, 1957), hospitals (Escarce, 1996),
and geographic regions (Baicker & Chandra, 2010). The
potential for geographic proximity to facilitate the spread
of knowledge and innovations across individuals or firms
has been recognized at least since Marshall (1890). It has
long been argued that local opinion leaders play a key role
in this diffusion process (Rogers, 1962), yet direct empir-
ical evidence has been limited. If local opinion leaders
have significant sway, the value of well-informed, promi-
nent physicians could extend beyond their contributions to
the scientific literature or the treatment of their own patients;
influential doctors may shape the practice of medicine across
their region.

The limited evidence on the role of opinion leaders is in
part due to the challenges of empirical identification. Clus-
tered technology diffusion within a network, organization, or
region could be driven by common local demand or capacity
for technology adoption rather than information spillovers.
Furthermore, it is difficult to isolate the role of opinion lead-
ers as a specific pathway for knowledge spillovers. This
study takes on both of these challenges, analyzing whether
new cancer drugs approved by the Food and Drug Admin-
istration (FDA) are adopted more rapidly in the geographic
regions containing study authors of the pivotal clinical study
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used in the FDA review process. First, by comparing diffu-
sion patterns across many new drugs with different locations
of study authors, we are able to separate local demand or taste
for technology from the role of knowledge spillovers. Sec-
ond, by comparing the influence of more and less prominent
physicians as measured by academic citations and clini-
cal trial role, we demonstrate that superstar authors have a
substantially broader reach than their less prominent peers.

Understanding the determinants of technology adoption
is of particular interest in the health care context, where
new technologies are a key factor underlying both rising
costs of care and improved health outcomes in the United
States (Newhouse, 1992; U.S. CBO, 2008; Smith, New-
house, & Freeland, 2009). Against the backdrop of this
aggregate growth is substantial heterogeneity across regions
in the extent and speed of new technology adoption (Fisher
et al., 2003a, 2003b; Skinner & Staiger, 2005) and large
geographic disparities in access to new cancer treatments
(Nattinger et al., 1992; Farrow, Hunt, & Samet, 1992;
Fairfield et al., 2010; Bristow et al., 2014).

While previous research has documented an extensive
role of social learning in determining technology adoption
in developing countries (Conley & Udry, 2010; Adhvaryu,
2014), we may expect little role for local information fric-
tions in this setting where adoption decisions are made by
expert physicians with high human capital and ready access
to scientific information. On the other hand, it is a setting
with substantial uncertainty about the efficacy and appro-
priate applications of newly introduced drugs. As a result,
the clinical trial authors’ detailed knowledge of drug mecha-
nisms, patient responses, and side effects may put them and
their peers at an informational advantage in the early stages
of a drug’s diffusion.

Existing empirical studies on the role of geographic
spillovers have primarily focused on the creative process
of new ideas and technologies, such as the tendency for
inventors to cite patents developed in their geographic region
(Jaffe, Trajtenberg, & Henderson, 1993) or for academic
citation patterns to follow migrant scientists (Azoulay, Zivin,
& Sampat, 2012).1 We expand on this work to investigate
the geographic connection between research activity and
the subsequent adoption of resulting technologies. Further,
there is relatively little evidence outside of development
economics (Banerjee et al., 2013) on how the prominence
or connectedness of an opinion leader affects his or her
influence. Our study sheds light on whether opinion leaders
continue to matter in a context where technology adoption
decisions are made by highly specialized experts.

1 Audretsch and Feldman (2004) provide an extensive review.
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Our analysis is based on a novel data collection effort
that identified the study authors of the pivotal clinical
trials for 21 new cancer drugs and matched the locations of
these authors to adoption patterns of the drugs using Medi-
care claims records from over 1.4 million patient cancer care
episodes from 1998 to 2008. For scientific publications of
pivotal clinical drug trials, the principal investigator is typi-
cally credited with the first author position. The last author is
often a research scientist affiliated with the sponsoring drug
company and is not a practicing physician for most of the
drugs in our sample. We restrict attention to study authors
who are also practicing clinicians.

The key finding from our baseline analysis is that patients
treated in the hospital market where the first author is located
are 36% more likely to receive treatment with the new drug
within the first two years following a drug’s FDA approval.
We show that alternative definitions of superstar authors
based not on authorship position but on citation counts to
previous publications yield similar results.

Increased drug use in the first author’s region is driven by
higher rates of adoption by physicians both within and out-
side the author’s practice group, suggesting the first author’s
influence extends beyond the boundaries of his or her organi-
zation. Other physician study authors boost utilization only
within their own physician group; non–first authors have
smaller effects on regional patterns of care.

While initial proximity effects are large, the effects fade
over time so that there is no discernible effect four years
after a drug’s approval. Despite this eventual convergence,
initial differences in new drug use have significant implica-
tions for access to care, which we explore in section IV of
this paper. This pattern of convergence also sheds light on
the underlying driver of regional disparities in our context.
The Roy model of medical treatment choice by Chandra
and Staiger (2007) demonstrates that in the presence of
productivity spillovers, greater physician experience with
a treatment may lead to steady-state specialization in that
treatment relative to alternatives, but our findings suggest
that experience-related productivity spillovers are not a key
factor in explaining regional disparities in cancer treatments.

We also examine the impact that author location may have
on where patients seek care. We document that appropriate
patients appear more likely to travel into a study author’s
region after a new drug is approved, suggesting that patients
may benefit from access to broad provider networks. An
instrumental variables strategy based on whether patients
reside in an author’s hospital market reveals that differen-
tial patient sorting accounts for about one-third of our main
finding.

Finally, we probe the welfare implications of our findings
by studying the survival improvements associated with the
adoption of new cancer drugs. By comparing regions with
fast and slow drug diffusion tendencies before and after the
introduction of a new drug, we estimate that fast-diffusing
regions show evidence of higher returns to new drug use. The
survival improvements are so large that they appear unlikely

to be driven solely by the greater fraction of patients receiv-
ing the new treatment in the fast-adopting regions. Rather,
they point to larger average treatment effects that could result
from better physician selection of patients for treatment or
improved dosing. This evidence further supports the idea that
the local information environment may be a key determinant
of both adoption and returns to new drug use and suggests
that policies that boost utilization without changing the qual-
ity of local information may fail to realize the full potential
benefits of the new technology.

The organization of the paper is as follows. Section II
describes the empirical context and key data elements.
Section III lays out the primary empirical strategies and
results. Section IV investigates the role and extent of patient
travel and selective sorting. Section V describes evidence
on the survival benefits of new cancer drug adoption, and
section VI concludes.

II. Setting and Data

In the United States, prescription drugs are regulated
by the U.S. Food and Drug Administration (FDA), which
between 2004 and 2013 granted approval for 26 new drugs
per year on average (U.S. FDA, 2014). In order to receive
approval, new drugs undergo an extensive review process,
in coordination with both the drug’s sponsor (the manufac-
turer) and the FDA.2 This process begins with the submission
of an Investigational New Drug application, which includes
a proposal for testing the drug on human subjects through
clinical trials. FDA regulations place primary responsibility
on the sponsor to select clinical investigators and research
sites, and on a qualified institutional review board to review
and approve each clinical investigator’s qualifications before
participation in the investigation (21 CFR § 312.53).

While each drug application may cite several studies
from various stages of drug development, the applicant must
prespecify a pivotal trial, which is typically a randomized
controlled trial that provides the most comprehensive evi-
dence to date on the efficacy of the drug. For establishing
generalizable efficacy of treatment effects, FDA industry
guidance states that drug sponsors may wish to invoke a
multicenter trial design since the results arise from a broader
patient population and multiple clinical settings (U.S. FDA,
1998). Drug sponsors may further minimize the risk of an
unsuccessful trial by employing a design in which the inves-
tigator enrolls a small fraction of the total number of subjects,
especially in cases where the investigator has a disclosable
financial interest in the study (21 CFR § 54.5(c)). As we will
show, the pivotal trials for all the drugs we study utilized a
multicenter trial design.

Once clinical testing is complete, the drug sponsor sub-
mits the results as part of a New Drug Application. If
approval is granted, an official prescription drug label is

2 Detailed information on the development and approval process for
new drugs can be found on the FDA’s website at http://www.fda.gov
/Drugs/DevelopmentApprovalProcess.
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written describing the indications for which the drug may
be legally marketed. The FDA publicly releases this label
as part of a detailed approval package describing the basis
for approval and the pivotal clinical trial that provided the
primary support for the approval decision.

Many new cancer drugs are approved based on promis-
ing evidence for a narrowly defined indication. For example,
many clinical trials are conducted on patients whose cancers
have relapsed after initial treatment, in which case the effi-
cacy of the new drug as an initial treatment is not established
upon drug approval. In addition, many cancer drugs come
with side effects that range from temporary but severely
uncomfortable (e.g., nausea, fever, pain) to serious or life
threatening (e.g., kidney failure, lung damage, nerve dam-
age, secondary cancers). A host of other drugs and additional
monitoring may be required to mitigate these side effects,
and physicians may develop expertise in this management
over time.

In this study, we investigate the adoption and utilization
of new cancer drugs in the years following initial approval
by the FDA. Two key data elements are necessary for our
analysis: the utilization of new cancer drugs across regions
over time and the location of physician study authors who
lead the pivotal clinical trials on which each drug’s initial
FDA approval was based.

A. Measuring Cancer Drug Use

We measure the diffusion of cancer drugs using Medicare
Part B reimbursement claims over the eleven-year period
1998 to 2008. During the study period, 21 new cancer drug
agents covered by Medicare Part B were approved by the
FDA.3 The diffusion of these drugs forms the basis of our
analysis.

While Medicare Parts A and B do not pay for most out-
patient prescription drugs, an exception is made for drugs
that are not typically self-administered, including cancer
drugs administered intravenously or intramuscularly. These
payments have comprised a rising proportion of Medicare
spending in recent years. In 2004, Medicare Part B spent
$11 billion on drugs, a category dominated by cancer drug
expenses; these costs rose 267% in the seven-year period
since 1997, as compared to a 47% rise in total Medicare
spending (Bach, 2009). Medicare Part B drug spending also
comprises a significant share of total Medicare drug spend-
ing. As of 2010, spending on Part B drugs totaled $19.5
billion, compared to the $61.7 billion spent on Part D drugs,
which are typically self-administered (U.S. Government
Accountability Office, 2012).

We analyze drug use at the level of Hospital Referral
Regions (HRR), as defined by the Dartmouth Atlas of Health
Care, which partition U.S. postal code areas into 306 distinct

3 While more than 21 new cancer agents were introduced over this period,
only drugs that are typically administered in a doctor’s office are billable
through Medicare Part B. Because we can track drug utilization only with
Medicare Part B claims, this restricts our sample to this group of 21 agents.

Figure 1.—Locations of Drug Pivotal Study Authors

Circles mark the Hospital Referral Regions (HRR) that contain a first author for the pivotal clinical trial
of a cancer drug in our sample. Some regions are the site of multiple first authors: Houston (four first
authors); Chicago (three first authors); Durham, North Carolina (two first authors); and New York, New
York (two first authors). Triangles mark HRRs that contain other authors.

regions (see figure 1). Regions are defined by where the
majority of the population in each postal code are referred
for tertiary health care services and are commonly used as
the unit of analysis for cancer care (see, e.g., Fisher et al.,
2003a, 2003b; Onega et al., 2008).

To track the adoption and use of new cancer drugs, we
analyze a 100% sample of Medicare outpatient claims, as
well as a 20% sample of Medicare physician claims. For each
drug in our sample, we study a cohort of patients diagnosed
and treated for the targeted cancer type (e.g., colon, lung)
for up to four years after the drug’s initial approval. The unit
of observation is the patient-year episode of cancer care;
we analyze all claims associated with a cancer diagnosis
for that patient within a calendar year. Our data comprise
1.4 million cancer care episodes within the first four years
following drug introduction, of which 659,000 occur within
the first two years after drug introduction. These data allow
us to track the utilization rate of each new cancer drug among
indicated patients across HRRs and over time following drug
approval.

For this analysis, we identified 21 new cancer drugs
that were covered by Medicare Part B and FDA approved
between 1998 and 2007.4 Of these drugs, 17 had clinical
trials led by researchers in the United States and thus may
be used to identify the impact of proximity to a first author
on drug diffusion. The remaining four drugs are included in
the sample to improve the precision of coefficients on other
control variables.

Summary information for the 21 drugs in our study and
their pivotal clinical trials is listed in table 1, sorted in order
of drug FDA approval date (further details on these drugs
are provided in appendix table A1). These drugs target a
variety of cancer types, including common carcinomas such

4 We began with a list of 26 new cancer drugs that we obtained from Bach
(2009). Of these drugs, 5 of them were billed fewer than ten times in our
sample over the first two years after approval. Given that we were not able
to observe any measurable diffusion for these agents, they were excluded
from the analysis.
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Table 1.—List of Studied Cancer Drugs

FDA
Pivotal Clinical Trial

Trade Approval Target Trial Patients Publication Number of Trial First
Name Year Disease Sites Enrolled Year Authors Author City

(1) (2) (3) (4) (5) (6) (7) (8)

Xeloda 1998 Breast cancer 25 163 1999 10 Dallas
Herceptin 1998 Breast cancer 54 222 1999 11 Chicago
Valstar 1998 Bladder cancer 41 90 2000 6 Chicago
Ontak 1999 Cutaneous T-cell lymphoma 25 71 2001 26 Durham
Temodar 1999 Brain cancer 21 225 2000 22 Houston
Ellence 1999 Breast cancer 39 710 1998 18 Canada
Mylotarg 2000 Acute myeloid leukemia 32 104 2001 17 Seattle, WA
Trisenox 2000 Acute myeloid leukemia 9 40 2001 15 New York
Campath 2001 Chronic lymphocytic leukemia 21 93 2002 11 Houston
Zometa 2001 Hypercalcemia of malignancy 87 287 2001 11 Canada
Zevalina 2002 Non-Hodgkin’s lymphoma 45 200 2002 13 Rochester, MN
Faslodex 2002 Breast cancer 83 400 2002 14 Houston
Eloxatin 2002 Colon cancer 120 463 2003 8 Nashville, TN
Velcadeb 2003 Multiple myeloma 14 202 2003 21 Boston
Bexxar 2003 Non-Hodgkin’s lymphoma 3 40 2005 7 Stanford, CA
Alimta 2004 Lung cancer 88 456 2003 13 Chicago
Erbitux 2004 Colon cancer 56 329 2004 12 United Kindom
Avastin 2004 Colon cancer 164 923 2004 15 Durham, NC
Dacogen 2006 Myelodysplastic syndromes 23 170 2006 16 Houston
Arranon 2006 Colon cancer 81 463 2007 12 Belgium
Torisel 2007 Kidney cancer 148 626 2007 19 Philadelphia

aThere were two pivotal trials for Zevalin; the second trial had 11 authors, with the same first author also in Rochester, Minnesota.
bThere were two pivotal trials for Velcade; the second trial had fifteen authors, with the first author in New York.

as breast, lung, and colon cancer, as well as hematologic and
urologic cancers. Nearly all the pivotal trials for drugs in our
study were large, multicenter trials. On average, each trial
enrolled 299 patients across 56 trial sites. A majority of the
pivotal clinical trials (13/21) were published in the Journal
of Clinical Oncology, followed by the New England Journal
of Medicine (4/21 publications).

Table A1, column 5 reports the number of indicated
patient cancer care episodes observed in the two calendar
years following FDA approval. There is substantial hetero-
geneity in target population size due to variation in disease
prevalence, ranging from about 800 episodes of the relatively
rare cutaneous T-cell lymphoma to over 84,900 episodes of
lung cancer. An observation in our regressions is a patient
cancer episode, effectively weighting our regressions by the
size of the target patient population; however, the results
from our baseline specifications are qualitatively unchanged
when each drug is given equal weight.

B. Author Roles and Locations

In addition to the Medicare claims data, we also collected
a new data set linking cancer drugs to the pivotal clinical
trial that provided the primary support for FDA approval. By
matching the pivotal trial information in the FDA application
to the authors of the academic article reporting the trial’s
findings, we are able to identify the researchers who were
primarily responsible for the trial.

There were an average of 14 authors per paper in our
sample, ranging from 6 to 26 (table 1, column 7). We
restricted our analysis to studying the influence of authors
who are also practicing clinicians, excluding from analysis

the drug company–employed scientists who often coauthor
clinical trials.5 We categorized authors as “first” and “other”
according to the order listed on the clinical trial, and we
recorded each author’s location based on the postal code of
the author’s institution at the time of the article’s publication.
As indicated by table 1, there are many more trial sites than
authors for most drugs in our sample; authorship typically
signals intellectual involvement with the research process
that goes beyond facilitating a clinical trial site.

Our analysis exploits the convenient fact that authorship
order is a strong signal of author contribution and involve-
ment. In contrast to other types of biomedical publications
where the last author is often the principal investigator,
the first author in large clinical trials is typically a senior
physician who was leading the trial effort as the principal
investigator (Baerlocher et al., 2007). The first author was a
practicing clinician for all of the studies in our sample, in
contrast to the last author position, which was held by a prac-
ticing clinician for only 7 out of 17 drugs. (The last author
is frequently an employee of the sponsoring drug company.)
The first author was also the single most highly cited clinical
author on the trial in 8 out of 17 cases, but this is true for
only 1 of the 7 last author clinicians.6

5 In no cases was the first author of the study affiliated with the drug
company. Often the drug company employees’ contributions were credited
with a middle or final author slot.

6 As further evidence of the prominent role of first authors in this setting, a
search of clinical trials listed on ClinicalTrials.gov found that for over 80%
of the drugs in our sample, the first author is registered as an investigator for
at least one trial involving that drug. By contrast, only 24% of last authors
are listed as investigators for that drug. We do not use the ClinicalTrials.gov
database to assign author roles because many of the clinical trials in our
sample predate the formation of this registry, so it is not possible to match to
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Table 2.—Drug Use Summary Statistics

First Other Author Author HRR for HRR with No
Author HRR HRR Different Drug Authors

Variables (1) (2) (3) (4)

Drug utilization rate 0.156 0.097 0.092 0.086
Fraction treated in author’s group 0.534 0.357 0.000 0.000
Number of observations 6,985 29,322 250,330 372,831
Average number of patients per HRR per drug 388 236 254 75
Number of HRR-drug pairs 18 124 986 4958
Number of unique HRRs 11 54 54 252

Regions are defined by the 306 Dartmouth Atlas Hospital Referral Regions (HRRs). For each drug in the sample, regions are partitioned into four groups based on geographic proximity to authors of the pivotal trial,
corresponding to the four columns in the table. Statistics are then reported for each column by aggregating over the set of drugs in the sample. Reported statistics reflect drug utilization over the first two years following
initial introduction. Data on drug utilization come from Medicare claims, 1998–2008.

In addition to using authorship position to determine a
physician’s trial role and prominence, we also develop a sec-
ond measure of each author’s prominence within academic
medicine using data on publication and citation histories
from Web of Science. We rank authors based on citation
counts accruing to publications in the relevant medical field.
Specifically, we find all research articles matching each
author’s last name and initials over a ten-year period lead-
ing up to the year of FDA approval. Using keywords coded
within Web of Science, we restrict to articles within the rele-
vant field. For all authors in our sample, this includes oncol-
ogy articles. Dermatology, neurology, hematology, urology,
and nephrology are added to the definition of matched arti-
cles for drugs targeting those specific cancer types. These
field restrictions provide a more targeted measure of promi-
nence within the relevant medical field, as well as help
disambiguate authors with common names. Next we count
all citations that have accrued to those publications to the
present. Finally, we define the top 10% (or 50%) authors as
the top-cited author on that drug trial plus any other author
whose citation count places him or her in the top 10% (50%)
of all authors on the same drug’s trial.

This citation-based measure of superstar status captures
authors’ academic prominence in their field, tagging the most
highly cited authors on each trial. To disentangle superstar
influence from differences across drugs or subspecialties in
rates of drug take-up and prominence of investigators, we
prefer this relative measure of superstar status, which allows
us to compare the influence of authors within the set of
researchers associated with each drug.

We categorize hospital referral regions (HRRs) based on
their geographic proximity to clinical trial authors. For each
drug, we define “first author HRR” and “other author HRR”
to be the HRRs where the first author and other authors for
that drug practiced, respectively. We create nonoverlapping
definitions of author regions, so that a region cannot be coded
as both a first and other author region, with first author des-
ignation taking precedence. Similarly, we code regions that
contain superstar authors by the citation count metric.

The first authors on these trials practice at a wide set of
academic medical centers. Author locations are pictured on

the pivotal trial to registry information, even if subsequent trials involving
the same drugs and investigators are part of the ClinicalTrials.gov database.

a map in figure 1, with first author locations marked by
circles and other author locations by triangles. The most fre-
quent first author locations within our sample are Houston
(four first authors); Chicago (three first authors); Durham,
North Carolina (two first authors); and New York (two first
authors). There are 11 unique HRRs that contain a first author
for at least one drug; 54 HRRs that contain a non-lead author
for at least one drug but never contain a first author; and 252
remaining HRRs that never contain any author (see table 2).
For our baseline results, we match patients to HRRs on the
basis of where they received cancer care.

Within the HRRs that contain study authors, we further
separate patients treated by doctors in the study authors’ own
practice groups from patients treated by other doctors in the
region. To accomplish this, we group together all physicians
who bill to the Medicare Carrier files using the same tax
identification number as a clinical trial author. If a patient has
at least one bill that year from a physician who is linked to
a trial author’s tax ID, we code the patient as treated within
an author’s practice group. Because academic oncologists
typically work as part of large group practices, this allows us
to separate the author’s influence within his own organization
from his or her influence on outside physicians.

C. Summary Statistics

The difference between a drug’s utilization in the first
author’s region versus other regions can be seen in figure 2,
which plots the fraction of indicated patients who receive the
new drug for each year following FDA approval.7 The solid
line plots raw drug utilization rates in each drug’s respec-
tive first author region (HRR), and the dashed line plots the
average drug utilization in all other regions.

Two of the main results from our empirical analysis that
follows are suggested by the raw data plotted in figure 2.
First, the figure shows that when a new cancer drug is intro-
duced, indicated patients treated in the region containing the
drug’s first author are more likely to receive the drug than
are patients in other regions. Second, this gap closes over
time, so that drug utilization in the first author’s HRR is no
more intensive than in other regions after four years. This

7 To make rates over time comparable, this graph is based on the balanced
sample (67%) of drugs for which four years of usage rates are available in
our data.
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Figure 2.—New Cancer Drug Utilization Rates,

by Years since FDA Approval

The figure plots raw usage for new drugs in the first author’s HRR versus all other HRRs. The “First
author HRR” and “Other HRRs” rates are generated by averaging over the drug-specific first author HRR
and non–first author HRR rates calculated separately for each drug in each year. To make rates over time
comparable, we restrict to the 67% of drugs in our sample for which four years of usage rates are available.

convergence occurs primarily because other regions increase
their new drug utilization until it is similar to the first author
region’s use, not because use in the first author’s region
decreases substantially. If physicians are learning about the
drug’s value over time, it appears they are learning that the
drug is a valuable addition to their practice. We do observe
a slight decrease in average utilization rates in first author
regions between years 3 and 4, from 18.0% to 17.2%, which
could reflect new competing drugs entering the market.

More detailed summary statistics are reported in table 2.
Over the first two years following drug approval, the average
utilization rate of new drugs for indicated patient episodes
ranges from 15.6% in regions where the first author prac-
tices to 8.6% in regions that never contain any investigators.
Among the regions that do not contain any investigators for a
given drug (columns 3–4), those regions that contain authors
for other in-sample drugs (column 3) are the more inten-
sive adopters, with 9.2% of patients receiving new drugs
compared to 8.6% in regions that never contain any inves-
tigators. This suggests that authors tend to be located in
regions that have a high degree of enthusiasm, expertise,
or patient demand for new cancer drugs in general. Within
the set of regions that contain an author for at least one in-
sample drug, the first author HRR has 70% greater utilization
rates on average (columns 1 and 3). Thus, despite the over-
all higher rates of new drug use in regions that contain an
author, utilization is even greater when the lead researcher
of the particular observed drug is in the area.

The second row of table 2 reports the fraction of patients
treated in each region type who are ever treated by a physi-
cian in an author’s practice group. Fifty-three percent of
patients treated in the first author’s region receive treatment
from a doctor in the same practice group as a study author;
only 36% of patients in a middle or last author’s region

receive treatment from a doctor in an author’s practice group.
Given that the authors’ practice groups do not have complete
regional penetration for the targeted cancers, we can compare
drug utilization within and outside the authors’ own practice
groups to test whether their influence extends beyond their
own organization.

III. Empirical Evidence

A. Empirical Strategy

Our central idea is to exploit variation in the geographic
location of lead study authors across multiple new cancer
drugs to identify the impact of geographic proximity to these
investigators on drug utilization. If the location of study
investigators were randomly assigned across the country, we
could simply compare drug utilization across locations and
infer that any increased propensity to use the drug in an
investigator’s region was due to this proximity. However,
study authors are not chosen randomly, and their locations
are likely to be correlated with other regional factors (e.g.,
co-location with innovation-loving physicians) that influence
the rate of new drug adoption.

The key methodological innovation in our analysis is to
identify the effect of proximity to a drug’s pivotal study
authors by implementing an empirical design analogous to
a difference-in-differences approach. Specifically, we com-
pare drug utilization in study author and nonauthor regions,
controlling for baseline differences in each region’s propen-
sity to use new cancer drugs, as well as controlling for time
variation in drug utilization to capture the demand for each
drug. Since we observe the diffusion of 21 newly introduced
drugs, our strategy allows us to exploit each region’s usage
of other new drugs to establish its propensity to adopt a new
drug when the region does not contain a study author. In addi-
tion, we use the time path of drug usage in nonauthor regions
to establish how the drug usage evolved in the absence of
author influence.

Our baseline regression specification takes the following
form:

(drug)ijtd = βf 1( first author HRR)jd

+ βo1(other author HRR)jd

+ {HRR × disease-group FEs}ijd

+ {drug × year FEs}dt + δXit + εijtd . (1)

An observation is a patient-drug episode (patient i treated
in provider region j, t years after drug d was approved),
limited to episodes for which drug d is indicated based on
patient diagnoses. The regression is estimated over patient-
drug episodes that fall within two years following FDA
approval of the drug.

The first two terms in the regression above are the key
independent variables of interest: indicators for whether a
study author of drug d’s pivotal clinical trial is located in
region j. To reflect the possibility that proximity effects may
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differ for these lead authors, we split our author proximity
measures into separate indicators for whether a patient is
treated in the first author HRR versus in a region containing
any other author (but not the first author). The coefficients
on these indicators describe how much more likely it is for
a cancer patient to receive a new drug if treated in an HRR
where an author of the drug’s pivotal clinical trial is located.

The third term in this regression is a vector of fixed effects
measuring each HRR’s propensity to use new cancer drugs
for each of three cancer disease types. Targeted diseases are
grouped based on the cancer subtype: hematologic cancers
(leukemias and lymphomas), urologic cancers (kidney and
bladder cancer), and other carcinomas (brain, breast, colon,
and lung cancer).8 This allows regions to differ in their enthu-
siasm and patient suitability for new cancer treatments within
each disease group. The fourth term in the regression allows
each drug to face an idiosyncratic yearly shock to utilization
that is common across regions. Finally, we include patient
characteristics Xi, which include indicators for patient sex,
race, age (in five-year bins), and whether this is a new cancer
treatment episode (i.e., patient had no cancer claims in the
previous calendar year).

The primary threat to the validity of this approach stems
from the possibility that study author regions are system-
atically more likely to use the new drug (for reasons not
driven by author proximity) than their utilization of other
new drugs for this cancer type and the national utilization
of this particular new drug would predict. This threat could
occur if, for example, clinical trials were located in areas
with idiosyncratically high latent demand for that particu-
lar drug. As outlined in further detail below, we address this
potential threat to validity in a number of other ways, includ-
ing limiting the analysis to regions that ever contain a study
author and studying the persistence of our estimated proxim-
ity effect. To preview our findings, the fact that the measured
proximity effect converges within four years suggests that
there are no permanent differences in patient appropriateness
or latent demand for the new drug in first author regions.

In the first set of results discussed below and presented in
section IIIB, we match patients to provider regions based on
where patient care is delivered. Thus, any effect of author
status on a region’s propensity to prescribe a new cancer
drug could be driven by two separate channels: (a) a pre-
scribing effect in which providers in the author region have
an increased propensity to treat a given population of patients

8 Data limitations prevent us from controlling for even finer divisions of
cancer types. For each separate cancer type, we must observe at least two
new drugs with different author locations to establish each region’s coun-
terfactual enthusiasm for new drug adoption within the diagnosis type. We
chose to separate urologic cancers because they are typically treated by urol-
ogists who have completed a different type of fellowship training program
(urology rather than hematology and oncology). It is common for hematolo-
gists to specialize in blood disorders, including leukemias and lymphomas,
and not treat solid tumors. While oncologists may also subspecialize in
treating particular types of solid tumors, their fellowship training spans
cancer types, and it is not uncommon for the same therapeutic agent to find
applications to more than one type of solid tumor. As a result, we group the
solid tumors together.

with the new drug; and (b) a sorting effect in which patients
suitable for particular treatments (based on clinical appropri-
ateness or patient demand) sort to providers who specialize
in those treatments.9 For example, an increased number of
suitable patients may travel into an author region for treat-
ment, or suitable resident patients may be more likely to stay
within the region for their care.

Our baseline specification in equation (1) measures the
aggregate impact of first author status on drug utilization,
but does not disentangle the prescribing and sorting mech-
anisms. Because these two channels have very different
implications for policy, section IV applies an instrumental
variables approach to isolate the change in utilization driven
by prescribing—the increased propensity of first author
regions to treat a given patient population.

B. Baseline Proximity Effects

Effects by geographic proximity. We begin by presenting
evidence on whether geographic proximity to a new cancer
drug’s pivotal study authors affects a physician’s propensity
to prescribe that drug for indicated patients and, if so, how
the proximity effect evolves over time.

With a Roy model of productivity spillovers, we may find
geographic specialization in the use of medical treatments
as described by Chandra and Staiger (2007). High-use areas
develop expertise in the technology and have higher returns
to its usage, and so they continue to use it more frequently in
the steady state than low-use areas that do not develop a sim-
ilar expertise. Under this model of productivity spillovers,
we might expect to find long-run differences in the use of
new cancer drugs across author HRRs and other regions.
An alternative model such as Phelps (2000), where informa-
tion asymmetries are the reason for delayed adoption among
non–first author regions would predict convergence in prac-
tice patterns as information about the new treatments reaches
each physician.

To measure the evolution of the author proximity effect,
we estimate a modified version of specification (1) in which
the author HRR indicators are interacted with a full set of
event-year dummies ranging from one to four calendar years
following drug approval (0 corresponds to FDA approval
year).10 The coefficients on these interactions describe the
corresponding proximity effect separately for each year.

The left panel of figure 3 plots how the estimated effect of
proximity to a drug’s first author on drug utilization evolves
over time, while the right panel plots the effect of proximity
to any of the drug’s other pivotal clinical trial authors. The
time pattern of proximity effects traced out in these graphs
reveals a number of insights. First, recently approved cancer

9 Both channels would be present even under random assignment of study
author location.

10 Medicare drug codes are not introduced until the calendar year following
FDA approval for most drugs in our sample, limiting our ability to measure
diffusion before the first year.
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Figure 3.—Influence of Author Proximity on Drug Use
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Graphs plot estimates of the effect pioneer investigator proximity has on drug utilization, t years since the corresponding cancer drug became FDA approved. Bands indicate 95% confidence intervals constructed
from standard errors clustered at the provider HRR-drug level.

drugs are used more intensively on average in regions con-
taining a study investigator, an effect that is much stronger
in the first author’s region. The second pattern highlighted
by figure 3 is that the proximity effect fades over time, so
that any proximity effect on drug utilization vanishes within
four years after drug approval.

This figure provides a novel way to benchmark the speed
of technology adoption. Prior measures of the speed of tech-
nology adoption have primarily focused on absolute rates of
take-up, such as the length of time since invention for an
individual to adopt (e.g., Comin & Hobijn, 2010) or rate of
acceptance (e.g., Griliches, 1957). However, these measures
can be inappropriate in settings where the “optimal” level of
adoption is difficult to ascertain (e.g., due to informational
uncertainty) and may even change over time, as compet-
ing technologies are introduced and scientific understanding
evolves. In contrast, our measure of convergence describes
how quickly regions conform to a benchmark adoption pat-
tern set in regions containing the experts involved in the
technology’s development.

These estimates suggest that proximity to a pivotal trial
investigator drives higher take-up of new drugs, an effect that
is stronger and more persistent for first authors than for other
authors of the pivotal study. Yet despite an initial eagerness to
use the drug, this difference in diffusion between investiga-
tor and noninvestigator regions converges within a few years.
This convergence provides further support for the economet-
ric assumption that the drug’s first author is not located in a
geographic area with idiosyncratically higher latent demand
for that particular cancer drug; if this were the case, we may

expect to see persistent differences in drug use across the
first author and non–first author regions.

Table 3 shows results from our baseline specification in
equation 1. Because the main proximity effects were found
in figure 3 to be concentrated in the first two years following
FDA approval, we focus the remainder of our regressions on
this period. As shown in column 1 of table 3, we estimate
that patients who receive cancer treatment in the first author’s
HRR are 4.0 percentage points more likely to receive the
new drug, significant at the 1% level. To provide a useful
benchmark, this first author impact is a 36% increase over
the 11.1% average utilization rate in regions that contain a
first author for a different in-sample drug with U.S.-based
first authors. Patients who receive treatment in a middle or
last author’s region, by contrast, are only 0.69 percentage
points more likely to receive the new drug, an estimate that
is positive but not statistically significant. The difference
between utilization in first author and other author HRRs
is statistically significant at the 5% level.

Extent of author influence: Results by physician group.
The average effect a study author has on prescribing behav-
ior within the HRR may obscure important heterogeneity in
regional utilization. The smaller average effect of “other”
study authors relative to the first author could result from a
narrower sphere of influence or from less enthusiastic adop-
tion even within the other author’s practice group. To explore
this possibility, we use physician group tax IDs to mea-
sure which physicians practice in the same organization as
a drug’s trial authors.
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Table 3.—Author Proximity Effect on Drug Utilization

Dependent Variable: New Drug Use

Proximity Measures A. All HRRs B. Author HRRs Only C: New Cancer Patients

(1) (2) (3) (4) (5) (6)

First author HRR 0.0404∗∗∗ 0.0383∗∗∗ 0.0399∗∗∗
(0.0131) (0.0122) (0.0154)

Other author HRR 0.0069 0.0068 0.0059
(0.0048) (0.0051) (0.0053)

First author HRR and in author group 0.0421∗∗∗ 0.0417∗∗ 0.0421∗∗∗
(0.0125) (0.0124) (0.0162)

First author HRR and nonauthor group 0.0416∗∗ 0.0392∗∗ 0.0409∗∗
(0.0211) (0.0195) (0.0203)

Other author HRR and in author group 0.0276∗∗∗ 0.0286∗∗∗ 0.0271∗∗∗
(0.0074) (0.0073) (0.0082)

Other author HRR and nonauthor group −0.0031 −0.0033 −0.0036
(0.0054) (0.0058) (0.0057)

Number of observations 659,468 659,468 286,637 286,637 393,618 393,618

This table reports results from six separate regressions, where the dependent variable is an indicator that equals 1 if the patient is treated with the new drug over the observed episode of care. Each observation
is a patient episode: a one-year episode of cancer treatment. The sample includes all episodes of care for the relevant cancer type within two years following a drug’s FDA approval. “First author HRR” (hospital
referral region) is an indicator variable that equals 1 if the patient is treated in the same HRR as the trial’s first author. “Other author HRR” indicates treatment in the same HRR as another trial author (but not the first
author). Author physician group indicators equal 1 if the patient was at any point during the year treated by a physician practicing in the same group as a trial author. All regressions include drug-year fixed effects;
HRR-cancer-type fixed effects defined using three categories of cancer drugs: urologic, hematologic, and other (including breast, colon, lung, and brain); and indicators for patient age, race, sex, and new cancer treatment
episode. Standard errors clustered at the HRR-drug level shown in parentheses. Significant at *p < 0.10, **p < 0.05, and ***p < 0.01. Columns 1 and 2: All HRRs and patient episodes within two calendar years
after drug’s FDA approval. Columns 3 and 4: Sample limited to HRRs containing any pivotal trial author. Columns 5 and 6: All HRRs but limited to new cancer patients, defined as patients with no cancer treatment in
previous calendar year.

To estimate proximity effects separately within and out-
side an author’s physician group, we estimate a modified
version of equation (1) where the indicators for being treated
in an author HRR are interacted with indicators for being
treated by the author’s physician group. Column 2 of table 3
shows the results of proximity separately by author group
status. Among patients treated in the first author’s HRR,
patients treated within an author’s physician group are 4.21
percentage points more likely to receive the new drug ( p <

0.01) compared to patients treated in nonauthor regions,
while patients treated outside the author group are 4.16 per-
centage points more likely to receive the drug. The point
estimate suggests that the first author appears broadly influ-
ential, increasing new drug adoption in his or her region
by almost equal amounts within and outside the practice
group. However, the statistical significance of the utilization
boost outside the first author’s practice group is sensitive to
the inference method, as discussed at greater length in the
“Robustness” section that follows.

The results are quite different in other author regions.
In those regions, patients treated within an author’s prac-
tice group are 2.8 percentage points more likely to receive
the new drug ( p < 0.01). However, there is no estimated
increase in drug utilization outside the author group, and the
95% confidence interval is bounded above by 0.7 percent-
age points. Despite being enthusiastic adopters of new drugs
within their own practice group, middle and last authors
do not appear to influence practice patterns in neighboring
physician groups. (See appendix table A2 for a version of
table 3 that separates middle and last authors.)

An important consideration for interpreting these results
is that because patients are not randomly assigned to doc-
tors, some of the increased utilization found within author
group could be driven by a compositional shift in which
patients are treated by author group physicians. To the extent

that patients most appropriate for the new drug sort into
the author group, some of the increase in prescribing rates
within the physician group may not correspond to a net
increase in propensity to treat a given patient with the new
drug. The region level results in column 1, however, indicate
that overall prescribing does in fact increase at the region
level.

Taken as a whole, the results from columns 1 and 2 pro-
vide evidence of important proximity effects within author
regions. The higher rates of drug utilization in a first author
region compared to other study author regions appear to be
driven primarily by the first author’s broader sphere influ-
ence. While both types of study authors boost utilization
within their own practice group, the evidence suggests that
only first authors substantially increase drug adoption by
doctors who are not part of the author’s group.

Robustness. To probe the robustness of the baseline
proximity effects reported in panel A of table 3, we run an
identical analysis in a restricted sample that includes only
regions with at least one study author for a drug in our
sample. Restricting the sample mitigates the concern that
non-research-intensive regions provide a poor counterfac-
tual for a new drug’s popularity in author regions. Results
are reported in table 3, panel B, with estimates very sim-
ilar to those found in the full sample reported in panel
A. We continue to find approximately 4 percentage point
higher new drug use in the first author region ( p < 0.01)
and a smaller, insignificant aggregate effect on other author
regions. Notably, restricting the sample in this way does not
substantially attenuate the estimated effects.

The interpretation we emphasize for our baseline results
is that increased utilization in author HRRs results from
knowledge spillovers from proximity to lead investigators.
However, a competing explanation is that heightened levels
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of utilization among patients in author HRRs might simply
reflect the continuation of treatment for patients enrolled in
the trial itself. A direct test of the continuation hypothesis
would be to identify patients in our data who were enrolled
in the pivotal trial and remove them from the analysis.
While the Medicare data do not permit identifying patients
enrolled in specific clinical trials, we reestimate our base-
line results in a sample restricted to new cancer patients,
defined to be those with no cancer treatment observed in
the previous calendar year. This sample restriction plausibly
removes patients enrolled in the pivotal study and eligible
for Medicare who survive and continue to receive the new
drug following FDA approval. Estimates based on new can-
cer patients alone, reported in panel C of table 3, are nearly
identical to our baseline estimates in panel A of table 3 that
include all cancer patients. We find these results to support
the interpretation that our baseline effects are driven by infor-
mational spillovers rather than a continuation mechanism
alone. Further, a back-of-the-envelope calculation described
in appendix A suggests that our effect size is too large to be
explained by the number of patients likely enrolled in the
author’s clinical trial site.

Finally, we explore the robustness of our findings to boot-
strap methods of statistical inference, with results reported
in appendix table A3. Our main results use conventional
cluster robust variance estimators, supported by the fact
that we have many clusters (6,086 region-drug pairs) of
which 18 clusters are “treated” (i.e., first author region for
given drug). To account for possible bias due to a mod-
est number of unequally sized treated clusters, we apply
the wild cluster bootstrap developed by Cameron, Gelbach,
and Miller (2008) and Cameron and Miller (2015). We also
vary the cluster definition, estimating p-values with clusters
at the HRR-drug level as in our baseline results, as well as at
the broader HRR level. When the number of treated clusters
is small, results from MacKinnon and Webb (2016) suggest
that conventional clustered standard errors are likely to over-
reject, but the wild cluster bootstrap tends to underreject. As
a result, the wild cluster bootstrap estimates should be con-
servative, with the true p-values lying between the values
given by each approach.

Our main findings remain statistically significant across
all four methods of inference reported in appendix table A3.
In particular, we consistently find that first author regions
have significantly higher drug use than nonauthor regions
( p-value ranges from 0.002 to 0.012, depending on cluster-
ing method). We also find that the impact of being treated by
the author’s group in a region that contains a middle or last
author consistently significant across inference approaches
( p ≤ 0.002 with all methods).

One result is sensitive to the inference method: our finding
that patients treated in the first author’s region but out-
side the first author’s group are significantly more likely
to get the new drug than patients in nonauthor regions.
The p-value is marginally significant with conventional clus-
ter robust standard errors ( p = 0.048) and becomes not

statistically distinguishable from 0 with the wild cluster
bootstrap ( p = 0.168 or 0.278 depending on cluster level).
While the point estimates for utilization in the first author
region within and outside the author’s practice group are
very close, we caution that the estimate of utilization rates
outside the author’s group is imprecisely measured.

Mechanisms of estimated author influence. The greater
impact of proximity to first authors could be driven by two
potential factors: (a) first authors take on more responsibil-
ity for analyzing and writing the paper, and thus are better
informed about the new drug’s value; or (b) even if all
authors had the same quality of information about a new
drug, first authors may be more influential due to their greater
professional stature. Both channels have potential a priori
support.

The pivotal clinical trials for drugs in our study have an
average of 14 authors per paper (table 1). In the publica-
tion of these trials, the first author often takes the lead role
in trial design and preparing the manuscript (Hudes et al.,
2007; DeAngelo et al., 2007), suggesting he or she may also
have the most detailed, comprehensive view of the drug’s
efficacy. The first author is also likely to be one of the
highest-profile physicians involved with the research; he or
she is the single most highly cited clinical author for eight of
the seventeen drugs in our sample with U.S.-based trials. The
findings reported in the previous section on authors’ scope
of influence outside their practice group lends support to
the idea that the first author’s status as a local opinion leader
may primarily drive these differences. In the next section, we
further explore whether identifying superstar authors based
on citation histories rather than authorship sequence leads to
similar findings.

Another complementary explanation for the observed
impact of first authors is that they may have stronger ties
to the sponsoring drug companies and be more actively
involved in drug promotion efforts. Of the 21 drugs in our
sample, 9 of the published trials report disclosure state-
ments detailing which authors have financial relationships
with drug companies. For these drugs, an average of 52%
of all clinical authors report financial ties to the sponsor-
ing drug company compared to 67% of first authors. These
financial ties include consulting fees, lecture fees, research
support, expert testimony, and stock ownership.

While drug companies are only 1.3 times more likely
to have financial ties to a first author compared to a mid-
dle or last author, the estimated impact of being treated in
the first author’s region on new drug use is over 5.5 times
larger than the estimated impact of being treated in another
author’s region. If each disclosed financial tie indicated an
equal amount of funding support and financial ties were the
only driver of our observed effect, then we would expect dif-
ferences in the frequency of financial relationships to scale
linearly with the estimated effect of author proximity. Hence,
the observed frequency of financial ties between drug com-
panies and clinical authors would not lead us to predict the
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first author’s apparent outsized influence on regional drug
utilization.

Unfortunately, our assessment is limited by the fact that
many drug trials did not report disclosures over this period,
and trials with disclosures did not list the amounts of money
exchanged. Thus, we cannot rule out the possibility that
drug companies have stronger relationships or expend more
resources supporting the first author’s drug promotion efforts
compared to other authors. Crucially, if drug companies were
investing more in the first author, this would suggest that they
perceived a higher return to the first author’s potential pro-
motion efforts; in that case, the drug company’s investment
is complementary to the superior information or professional
stature that the first author already offers.

A related issue is that because the geographic location of
a study author is also typically the location of a trial site
(though one of many), it is difficult to disentangle whether
local physicians primarily learn about a new drug because
of proximity to a study author or proximity to trial activity.
However, our finding of a larger first author proximity effect
compared to other authors sheds some light on this issue.
Specifically, the differential effects do not appear to be easily
explained by substantial differences in the size of the trial
site by author type: for the eleven drugs in our study for
which we could determine the author location of the largest
trial site in the study, eight (73%) were not located in the
lead author’s HRR.

Outside of drug company–sponsored events, there are
many other opportunities for oncologists to meet with their
local peers and share ideas. Within a given oncology practice
group, formal mechanisms may include the establishment of
internal drug treatment protocols and “tumor board” meet-
ings where treatment options for new cancer cases are often
discussed with a broad team of care providers. Across sepa-
rate practice groups, opportunities for sharing ideas include
invited grand rounds seminars, local and regional profes-
sional society meetings, contact through shared patients and
patient referrals, and casual networking.

In personal communications with oncologists, physicians
described significant barriers to the adoption of new cancer
agents. Because trial participants are often selected for being
in more stable health than many cancer patients, physicians
cited significant concern about the risk of severe side effects
and uncertainty about optimal dosing regimens. Oncologists
are also aware of the potential for heterogeneous treatment
response; hearing about successfully treated patients may
be more compelling than reading about modest average
response rates. The expertise of a prominent physician in the
community on a new drug’s applications and efficacy could
substantially lessen these barriers to new drug adoption.

Finally, another explanation for the observed regional dif-
ferences in drug utilization is differences in drug prices.
There are two relevant prices to consider in this context:
the reimbursement that physicians are paid for prescribing
a drug and the cost to the physician to purchase the drug.
If drug-specific reimbursements were higher or purchasing

costs lower in first author regions than in other regions, prices
could potentially explain our proximity findings. However,
we think neither of these price effects is a likely expla-
nation in our context. Because we are studying utilization
among Medicare patients where reimbursement rates are set
by administrative rule, there is effectively no scope for reim-
bursements to be idiosyncratically higher in a given region
for first author drugs. In addition, while it is conceivable that
drug manufacturers could offer drug discounts to specific
physicians or groups and might specifically target physicians
practicing at the first author’s hospital, our high estimated
utilization rate for local physicians who do not practice in
the first author’s physician group makes it seem unlikely that
drug discounts could explain our results.

C. Superstar Proximity Effects

Our baseline results in section IIIB suggest that clinical
trial authors with greater expertise or prominence (as cap-
tured by first author status) have a greater impact on drug
utilization in their region. To further explore the differential
effect of superstar physicians, we apply our citation-based
measure of author prominence that identifies the top 10% (or
50%) authors as the top-cited author on that particular drug
trial, plus any other authors whose citation count places them
in the top 10% (50%) of all authors on the same drug’s trial.
Because we want to make comparisons of doctor influence
within the set of physicians on a particular drug trial, this rel-
ative measure provides a clear comparison that will ensure
our ability to separate the relative prominence of authors
on each trial. Note that because trial authors are a selected
population, it is likely that these citation ranks would be
even more favorable if compared to the overall population
of physicians in their field.

For any measure of superstar status, our baseline regres-
sion in equation 1 is easily modified to estimate the differ-
ential impact of proximity to a superstar author. For these
regressions, we allow author proximity effects to vary by
drug and then estimate the differential impact of proximity
to a superstar author. Our superstar regression takes the form

(drug)ijtd = βs1(superstar author HRR)jd

+ {author HRR × drug FEs}jd

+ {HRR × disease-group FEs}ijd

+ {drug × year FEs}dt + δXit + εijtd . (2)

The key coefficient of interest is βs, which describes how
much more a new drug is used in a superstar HRR relative to
other author HRRs, on average. Thus, if βs = 0, utilization in
a superstar region is no more intensive than in other author
HRRs, while βs > 0 corresponds to higher utilization in
superstar regions. The second term in this regression allows
the effect of author proximity to vary by drug, and the last
three terms are the same as in equation 1.

The results from regression 2 are shown in table 4.
Column 1 shows that drug utilization in first author HRRs is
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Table 4.—Superstar Author Proximity Effect on Drug Utilization

Dependent Variable: New Drug Use

Independent Variables (1) (2) (3) (4) (5) (6)

First author HRR 0.0300∗∗ 0.0246∗∗ 0.0242∗∗ 0.0230∗∗
(0.0124) (0.0119) (0.0111) (0.0110)

Top 50% cited author HRR 0.0227∗∗ 0.0154∗ 0.0144
(0.0090) (0.0081) (0.0090)

Top 10% cited author HRR 0.0232∗∗ 0.0100 0.0034
(0.0122) (0.0108) (0.0117)

Number of observations 659,468 659,468 286,637 286,637 393,618 393,618

This table reports results from six regressions that test whether superstar authors are more influential than other study authors for the same drug. The baseline regression specification is augmented to include a vector
of (drug)×(any author HRR) fixed effects. Reported coefficients describe whether regions with authors of the noted type have higher new drug use compared to the rest of the author regions for the same drug. Top
50% and top 10% authors are defined as the most prominent academic authors for each drug, as measured by citation counts accruing to publications produced over the ten years leading up to FDA drug approval in
the relevant field. See notes to table 3. *p < 0.10, **p < 0.05, and ***p < 0.01.

3.00 percentage points higher on average than in middle or
last author HRRs for the same drug, which closely matches
the result obtained by differencing the first and other author
HRR results in table 3. From columns 2 and 3, new drug uti-
lization is 2.27 percentage points higher in a top 50% cited
author HRR (column 2) and 2.32 percentage points higher
in a top 10% cited author HRR.

Columns 4 to 6 run horse races between these three super-
star measures. Column 4, which includes superstar indicators
for both first author, and top 50% cited author, shows that
both indicators correspond to higher utilization; the coeffi-
cient on the top 50% cited author is marginally significant,
with p = 0.056. Column 5 includes first author and top
10% cited author indicators; both coefficients point to higher
utilization, although only the first author corresponds to a sta-
tistically significant increase. Similarly, in column 6, which
includes all three superstar measures, all coefficients are
positive, but only first author is significant.

Each of the author regions contains a physician investi-
gator who is well informed about the new drug, but among
author regions, those with the most prominent authors are
the ones that experience the most substantial increases in
new drug use. These findings suggest an important role of
local opinion leaders even in the context of drug adoption
by highly expert decision makers with access to clinical trial
findings. Regional information frictions may dissipate within
three to four years, but during the initial two years after drug
introduction, local opinion leaders have substantial influence
on adoption rates in their region. These results do not esti-
mate the causal impact of increasing an individual author’s
citation history or authorship order ceteris paribus; princi-
pal investigators and authors with high citation counts are
likely to be exceptional along other unmeasured dimensions
as well.

D. Extent of Investigator Influence

Appendix table A4 further probes the reach of drug
authors’ influence. First, we investigate whether the impact
of investigator proximity is related to regional enthusiasm
for other new cancer drugs. We find that the first author’s
influence is greatest in regions that are typically slower to
adopt new drugs. There may be greater scope for the study

author to affect practice patterns in slower-adopting regions
that are not already very high users of new cancer drugs.

Second, we test whether whether study authors affect new
drug utilization in neighboring regions. Although the first
author’s influence may extend beyond physicians in his or
her own practice group to others practicing in the same
region, there is no evidence that his or her influence raises
new drug utilization in neighboring regions.

Finally, we study author influence on off-label drug use.
We find no evidence of higher use of the drug for off-label
patients in the authors’ regions, suggesting authors’ influ-
ence is largely local to the cancer type on the initial label.
Notably, the estimates on off-label drug use are less precise
than our baseline findings, given the lower rate of off-label
prescribing.

IV. Patient Travel and Selective Sorting

As discussed in section IIIA, there are two possible chan-
nels through which the observed increased propensity to
prescribe new drugs in first author regions may occur: an
increased propensity to use the drug on a fixed set of
patients and a change in patient sorting such that the first
author regions see patients with higher latent demand. In
this section, we test directly for changes in patient sorting as
indicated by patient travel patterns and then use an instru-
mental variables strategy to identify the differences in drug
utilization that occur over a fixed set of patients.

In table 5, we begin by testing whether patients with the
targeted diagnosis who seek treatment in the first author’s
HRR are more likely to have traveled from a different HRR
of residence. This would occur if, for example, savvy patients
travel into author regions for treatment in order to gain access
to the new cancer drugs. In columns 1 and 2, the regression
specification mirrors that in the main specification described
in equation (1), but the outcome variable has been replaced
with an indicator variable for travel, defined by whether the
patient’s HRR of residence is not the same as the HRR where
he or she receives care.

In the baseline specification reported in column 1, we find
a 3.3 percentage point increase in the fraction of patients
treated in the first author’s HRR who do not live in the region,
significant at the 10% level; on average, 22.2% of patients
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Table 5.—Patient Travel and Proximity Effects

Dependent Variables

Travel New Drug Use

Independent Variables (1) (2) (3) (4)

First author HRR 0.0329∗ 0.0309∗ 0.0327∗∗∗ 0.0311∗∗∗
(0.0192) (0.0197) (0.0124) (0.0116)

Traveler to first 0.0224 0.0226
author HRR (0.0140) (0.0138)

Other author HRR 0.0295∗∗∗ 0.0285∗∗∗ 0.0066 0.0064
(0.0094) (0.0089) (0.0052) (0.0056)

Traveler to other 0.0012 0.0011
author HRR (0.0061) (0.0064)

Sample
Author HRRs only? No Yes No Yes
Number of

observations 659,468 286,637 659,468 286,637

Columns 1 and 2 report results from regressions where the dependent variable indicates whether the
patient received care outside his or her HRR of residence. Columns 3 and 4 report results from regressions
where the dependent variable indicates whether the patient received treatment with the new drug. Columns
2 and 4 restrict the sample to regions that contain a study author for at least one drug in our sample. See
notes to table 3. *p < 0.10, **p < 0.05, and ***p < 0.01.

treated in an author region reside outside the region. There
is a similar 3.0 percentage point increase in the fraction of
traveling patients treated in other authors’ HRRs, significant
at the 1% level. Restricting to the set of regions that ever
contain a study author in column 2 yields similar results.

This evidence suggests that some patients are aware of
new centers of expertise for the new cancer drug (perhaps
due to physician referral) and are willing to travel farther
to improve their access to the drug. Note that these findings
do not necessarily require patients to cross large distances
for care; 66% of travelers are being treated in a neigh-
boring region that shares a border with the patient’s HRR
of residence. In an unreported regression, we found that
these travel effects are driven by patients seeking care in
an author’s practice group; excluding patients treated by
an author group leads to negative, insignificant coefficients
in the travel regression. Taken together, these findings are
consistent with the possibility that some patients are on the
margin between seeking care at their local tertiary care center
or traveling to a neighboring, prestigious academic medical
center for treatment. If the center has recently participated
in a clinical trial for a new drug treating the patient’s cancer,
the patient may be more likely to travel for treatment.

If these patients who are newly traveling into an author’s
practice group are either more clinically appropriate for the
new drug or have higher demand for trying the new technol-
ogy, then part of the increased levels of drug utilization in
the author’s region may be driven by the changing patient
composition. In table 5, columns 3 and 4, we test whether
the patients who travel from outside HRRs differ in their
propensity to receive the new drug relative to nonmovers. In
these columns, we report results from a regression that aug-
ments our baseline equation (1) by interacting the author
proximity indicators with a binary indicator traveler for
whether the observed patient is seeking care outside his or
her HRR of residence. Based on this regression, we estimate
that patients traveling to the first author’s HRR are 2.2 per-
centage points more likely to receive treatment with the new

drug than patients treated in the first author HRR who also
reside within that HRR, although the result is not statistically
significant at conventional levels. Travelers to other author
regions are only 0.1 percentage points more likely to get the
drug, which is also not significant. The confidence intervals
on these travel estimates allow the possibility that the over-
all 4.0 percentage point higher new drug use in first author
regions may be driven at least in part by changing patient
composition, and not solely by a higher propensity to use
the drug on a fixed set of patients.

These estimates on patient travel are particularly rele-
vant considering the new attention to provider networks
available on the Affordable Care Act’s health insurance
exchanges. A common feature of these new insurance plans
is restricted provider networks (Hancock, 2013), with con-
sumers facing much higher prices for out-of-network care.
Our findings on travel suggest that severely ill patients, such
as the cancer patients in our study, may travel strategically
to improve access to providers with additional expertise in
new treatments.

Instrumental variable analysis. To isolate whether trial
author regions are indeed more likely than other regions
to use the drug on a given set of patients, we pursue an
instrumental variables (IV) strategy. In particular, we use
indicators for whether the patient resides in the first or other
author’s HRR as an instrumental variable to predict whether
he or she seek treatment in an HRR that contains the first
or other author for the relevant drug. This instrumentation
strategy mitigates the concern that patient sorting renders
the patients treated in the first author region more suitable
to treatment with the new cancer drug.

The reduced-form equation of the IV model takes the
following form:

(drug)ijtd = γ11(reside in first author HRR)ijd

+ γ21(reside in other author HRR)ijd

+ {HRR × disease-group FEs}ijd

+ {drug × year FEs}dt + δXit + εijtd . (3)

Paralleling the baseline regression specification, we include
fixed effects for HRR by disease group and for drug by year.
We also report results from an enriched IV specification,
where in addition to using the two indicators for residence
in an author HRR as instrumental variables, we also include
two additional instruments: (a) residence in a first author’s
neighboring HRR (a region that shares a border with the
first author HRR) and (b) residence in an other author’s
neighboring HRR (a region bordering an other author HRR).

The IV exclusion restriction requires that after condition-
ing on the included fixed effects, where a patient lives is
uncorrelated with his or her suitability or demand for treat-
ment with the new cancer drug. For example, because we
include region by drug class fixed effects, this allows regions
to vary in their latent demand for drug classes but does not
allow author regions to have higher latent demand for the
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Table 6.—IV Estimates of Proximity Effect on Drug Utilization

Outcome: New Drug Use

(1) (2) (3)

A. Reduced form: Drug receipt effect
Residence in first 0.0228∗∗ 0.0217∗∗ 0.0228∗∗

author HRR (0.0099) (0.0099) (0.0099)

Residence in other 0.0038 0.0044 0.0046
author HRR (0.0044) (0.0050) (0.0061)

Residence in first author’s 0.0035
neighbor HRR (0.0045)

Residence in other author’s −0.0028
neighbor HRR (0.0028)

B. Two-stage least squares
Provider in first 0.0293∗∗ 0.0259∗∗ 0.0263∗∗

author HRR (0.0127) (0.0114) (0.0115)

Provider in other 0.0056 0.0060 0.0065
author HRR (0.0058) (0.0061) (0.0061)

Sample
Author HRR only? No Yes No
Number of observations 659,468 286,637 659,468

Reduced-form results report coefficients from three regressions where the outcome variable is new drug
use and the key explanatory variables are indicators for whether a given patient resides in the same region
as the study author (or in column 3, in a neighboring region). In panel B, the two-stage least squares
results use patient residence variables as instrumental variables for whether the patient is treated in the
author region. All regressions include drug-year fixed effects and HRR-cancer type fixed effects defined
using three categories of cancer drugs: urologic, hematologic, and other (including breast, colon, lung, and
brain). Standard errors clustered at the HRR-drug level shown in parentheses. *p < 0.10, **p < 0.05, and
***p < 0.01.

author’s drug compared to other drugs in the same class. The
exclusion restriction could be violated under a few condi-
tions. One possibility is that patients with the targeted cancer
who reside in the first author region could have idiosyn-
cratically high demand for the drug; this could occur if, for
example, the drug targets a particular subtype of colon cancer
that has a higher-than-typical prevalence in the first author’s
region, so that a larger fraction of colon cancer patients in the
region is appropriate for treatment. Second, the instrument
would be invalid if patients change their HRR of residence
in response to the availability of new cancer drugs.

While the IV exclusion restriction is not directly testable,
it seems plausible that the fraction of targeted cancer patients
suitable for treatment with the new drug would not vary sys-
tematically across regions and that elderly Medicare patients
would be very unlikely to move across regions within a
three-year period in response to the location of a new can-
cer drug trial. This assumption is bolstered by the observed
convergence in drug usage across first author and non–
first author regions, as reported in figure 3, suggesting no
permanent differences in patient eligibility for treatment in
the first author’s region.

Results from the IV regressions are reported in table 6.
The reduced-form results show that patients residing in the
first author’s HRR are 2.3 percentage points more likely
to receive treatment with the new drug, significant at the
5% level; there is no significant increase in use for patients
residing in other author regions. The IV estimate reported
in the final rows of the table rescales the reduced-form esti-
mate and shows that providers in the first author’s region are
2.9 percentage points more likely to prescribe the new drug
compared to other providers, significant at the 5% level. The
finding is robust to restricting the sample to patients residing

in HRRs that contain an author for any drug, as reported in
column 2. Adding the instrumental variables for residence
in neighbor HRRs to the model also does not substantially
change the estimated IV coefficient (cf. column 3).

The IV results suggest that over 70% of the baseline effect
reported in section IIIB is due to the increased propensity of
physicians in the first author’s region to prescribe the drug on
a given set of patients. While the differential sorting of high-
demand or high-appropriateness patients to author regions
explains some of the observed boost in drug utilization, most
of the effect is driven by differences in physician behavior,
not patient sorting. Under a local average treatment effect
interpretation, the IV result implies that doctors in the first
author’s region are 2.9 percentage points more likely to use
the new drug on a given set of patients—those for whom
location of residence determines location of care.

Taken together, the patient traveling results and the IV
regressions find support for both hypothesized channels by
which the presence of a first author may affect care in his
or her region. Patients with high latent demand for the drug
seem to seek out care in areas with high expertise in the
new technology. In addition, doctors in the first author’s
region are more likely to use the new drug, holding fixed the
population of patients seeking treatment, with this channel
representing the primary driver behind our baseline result.

Extrapolating from the IV regression result, if all
providers behaved like those in the first author’s region,
approximately 2,500 additional Medicare fee-for-service
(FFS) patients would be treated with each new cancer drug
in the first two years after initial drug approval. This amounts
to an estimated 53,000 Medicare FFS patients in total over
the eleven years of our sample who did not receive treatment
with one of the 21 drugs under study due to the lower pat-
terns of initial usage in areas that did not contain the study’s
first author.

V. Welfare Implications of Early Drug Diffusion

The evidence presented thus far suggests that clinical
trial investigators influence local drug use in the first few
years following drug introduction. A key remaining question
is whether faster drug diffusion into late-adopting regions
would be welfare enhancing. Are nonauthor regions slower
to adopt new drugs because they are realizing more modest
survival benefits?

Contrasting the survival benefits to new drug adoption
in author and nonauthor regions is not statistically powered
in our setting, given the modest number of author regions
and the limited impact of most new drugs on survival. If
we maintain the identification strategy specified in equation
(1) but replace the outcome variable with one-year mortal-
ity, we estimate that one-year mortality is 0.65 percentage
points lower in first author regions, with the 95% confidence
interval running from −2.6 to 1.3 percentage points. The cor-
responding Wald instrumental variable estimate for the effect
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of a new drug is similarly imprecise, suggesting a statisti-
cally insignificant 15 percentage point reduction in one-year
mortality.

Due to the lack of statistical power for this analysis, we
turn to a broader comparison of cancer mortality in fast- and
slow-adopting regions to identify whether the survival gains
from new cancer drugs are related to observed adoption pat-
terns in our data. (Details of the difference-in-differences
estimation are described in appendix figures A1 and A2,
as well as accompanying notes.) The key source of identi-
fication comes from comparing survival rates across fast-
and slow-diffusion regions before and after the introduc-
tion of a new cancer drug. For this strategy, we measure a
region’s enthusiasm for adopting a new drug using a leave-
out estimate of enthusiasm for other new drugs, excluding
the region’s realized utilization for that particular new drug.

We find that new drug use is 3.0 percentage points higher
in fast-diffusing regions in the first four years following
FDA approval ( p < 0.01). Further, regions that are fast
adopters experience a 1 percentage point greater reduc-
tion in one-year mortality for the relevant cancer diagnosis
than slow-adopting regions ( p < 0.05). The effect is even
larger for eighteen-month mortality, with fast adopters expe-
riencing a 1.5 percentage point greater reduction than slow
adopters ( p < 0.01). If we interpret the effect on drug utiliza-
tion as the first stage of an instrumental variables regression
to calculate the local average treatment effect of new drug
use, the Wald instrumental variable estimate would sug-
gest that new drug use is associated with a 51 percentage
point reduction in eighteen-month mortality, among the mar-
ginal treated patients in high-diffusing regions, with a 95%
confidence interval of [−0.83, −0.19].

However, the implied instrumental variable estimate of
the drug treatment effect stretches credibility, considering
that the average eighteen-month mortality rate is 35.8%
in our sample. It could be that the marginal patient who
would be treated in a fast-adopting region but not in a
slow-adopting region has much higher-than-average latent
mortality. However, a more compelling explanation may
be that fast-diffusion regions have higher returns to new
drug use than slow-diffusion regions even for inframarginal
patients. Due to superior dosing, design of drug cock-
tails, management of side effects, or patient selection, these
regions may achieve higher average returns to new drug use
among all treated patients.11

Considered in the context of our earlier results, these
findings suggest that policies designed to increase drug
utilization without improving the surrounding information
environment on appropriate application and management of

11 Oncologists have documented dramatic variation in the return to drug
use corresponding to variation in information regarding appropriate use of
the drug. For example, when trastuzumab was introduced, breast cancer
patients taking the drug survived for a median of 25 months. Now, median
survival has increased to 41 months for patients treated with the same drug,
which expert oncologists have attributed to longer dosing schedules and
better side effect management (Pollack, 2014).

the new drug may not achieve substantial survival gains.
Information frictions may be a key limiting factor not only
for drug adoption but also for the medical benefits of new
drug use. Interventions that improve local information about
a new drug, such as through closer contact with experts,
may result in higher use and improved patient welfare by
facilitating the effective application and targeting of the new
technology.

VI. Conclusion

The results suggest that information frictions significantly
limit the adoption of new cancer drugs in the first few years
after drug introduction. Prominent physicians who are well
informed about a new drug in the early stages of diffusion
may play a key role in easing these frictions. Our results
show that new drug utilization is 36% higher over the two
years following FDA approval in the hospital market where
the lead physician investigator on the drug’s pivotal clinical
trial practices. Despite the marked regional differences in
early adoption of new cancer drugs, there is no evidence that
early expertise with a drug drives higher rates of long-term
utilization. Author HRRs are no more likely to specialize in
treatment with the new drug than other regions by the fourth
year following drug introduction. Thus, the information fric-
tions that may hamper early adoption seem to ease over time
as utilization rates in first author and other HRRs converge
within a four-year period.

While both first authors and other authors increase new
drug utilization within their physician practice group, the
influence of first authors is larger. Further, we show that
relying on publication and citation history rather than author-
ship order to identify superstar study authors yields similar
results, suggesting that investigators with greater profes-
sional status are more influential in increasing drug adoption
in their region. We also find that investigator proximity has
the largest impact on regions with the lowest levels of adop-
tion of other new drugs, pointing to greater adoption frictions
in less technology-intensive areas.

Regions that are quick to adopt new cancer drugs also see
greater improvements in patient survival following new drug
introduction. The large magnitude of these survival gains in
fast-adopting regions suggests they may be driven not only
by the greater fraction of patients receiving treatment with
the new drug in these regions but also by higher average
returns to new drug use.

This study has important limitations that may point the
way to informative avenues for future research. While the
results suggest a complementarity between the opinion
leader’s professional prominence and superior information
about a new drug, we cannot fully disentangle how infor-
mation and prominence each contributes to local diffusion.
Future work should assess the role of local opinion leaders
outside the context of research involvement to better under-
stand the potential policy mechanisms that could improve
local dissemination of information about medical innova-
tions. Finally, a more detailed understanding of the factors
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shaping the heterogeneous estimated returns to new technol-
ogy adoption will be important for understanding the welfare
consequences of variation in early diffusion of medical
treatment.

The evidence in this paper suggests that the local infor-
mation environment may be a key determinant of both the
adoption of new cancer drugs and the realized survival ben-
efits. Merely increasing new drug use in slower-adopting
regions may not lead to substantial improvements in patient
survival, but improving the local information environment
to support new drug adoption could have significant welfare
benefits by increasing appropriate utilization and improving
survival rates for treated patients. Contact with prominent
physicians with expertise on a new drug may increase local
drug use by reducing information frictions.
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